35011386.04

TwidoSuite V2.2

Programming Guide

05/2009

www.schneider-electric.com

Schneider



Schneider Electric assumes no responsibility for any errors that may appear in this
document. If you have any suggestions for improvements or amendments or have
found errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic
or mechanical, including photocopying, without express written permission of
Schneider Electric.

All pertinent state, regional, and local safety regulations must be observed when
installing and using this product. For reasons of safety and to help ensure
compliance with documented system data, only the manufacturer should perform
repairs to components.

When devices are used for applications with technical safety requirements, the
relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware
products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.
© 2009 Schneider Electric. All rights reserved.

35011386 05/2009



Table of Contents >
Safety Information ................. ... .ot 11
AbouttheBook.............cciiiiiiiiii i 13
Part | Description of Twido Software ................. 15
Chapter 1 Introduction to TwidoSuite ....................... 17
Introduction to TwidoSuite. . . .. ... 18
Introduction to Twido Languages . ..., 19
Chapter 2 Twido Language Objects ...................c.ntn 23
Language Object Validation . ......... ... ... .. ... ..., 24
Bit Objects. . . .o 25
Word Objects. . .. ..o e 27
Floating Point and Double Word Objects .. ....................... 30
Addressing BitObjects . .......... .. . 34
Addressing Word Objects . . .. ... 35
Addressing Floating Objects . . .. ... ..o 36
Addressing Double Word Objects. . .. ..., 37
Addressing Inputs/Outputs ... ... 38
Network Addressing . . . ..ot e 41
Function Block Objects . ... ... 42
Structured Objects. . . . ..o oo 44
Indexed Objects . ..... ... 48
Symbolizing Objects . . ... ... 50
Chapter3 UserMemory ...........cciiiiinnnrnnnrnnnnennn 51
User Memory Structure . . .. ... e e 52
Backup and Restore without Backup Cartridge or Extended Memory . . . 55
Backup and Restore with a 32K Backup Cartridge . . . ............... 57
Using the 64K Extended Memory Cartridge . .. .................... 60
Chapter 4 Eventtask management....................ccutn 63
Overview of Event Tasks. . .. ... e 64
Description of Different Event Sources . ... ....................... 65
Event Management. . ... ... . . . 67

35011386 05/2009



Part Il
Chapter 5

Chapter 6

Chapter 7

Chapter 8
8.1

8.2

8.3

Chapter 9

Special Functions ........................... 69

Communications ............cciiiiiiiiiiirnnernan 71
Presentation of the Different Types of Communication.............. 72
TwidoSuite to Controller Communication. . ....................... 74
Communication between TwidoSuite andaModem .. .............. 81
Remote Link Communications. .. ............ ... ... 93
ASCII Communications . . ...t 106
Modbus Communications . ......... ... . .. . . i 117
Standard Modbus Requests . ........ ... ... . i 134
Modbus Function Codes 23 (MB FC) - Read/Write Multiple registers and

NWoOrds. . .o 140
Modbus Function Codes 43/14 (MB FC) - Read Device Identification . . 143
Transparent Ready Implementation Class (Twido Serial A05, Ethernet

ATD) 147
Built-In Analog Functions ........................ 149
Analog potentiometer. .. ... ... . 150
AnalogChannel. ... ... .. . 152
Managing AnalogModules ....................... 155
Analog Module Overview. . .. ... i 156
Addressing Analog Inputsand Outputs . .. .......... ... ... ...... 157
Configuring Analog Inputsand Outputs. .. ......... .. ... ... ..... 159
Analog Module Status Information. .. ............ ... ... .. .. .. .. 166
Example of Using AnalogModules . ......... ... ... ... ... ...... 168
Twido Extreme Input/Output Configuration .......... 171
An Introduction to Twido Extreme Inputs and QOutputs .............. 172
Twido Extreme Addressing Inputs/Outputs (I/O) . .................. 172
Twido Extreme Input Configuration .. ............ ... ... .. ...... 175
Twido Extreme Discrete Input Configuration. . .................... 176
Twido Extreme Analog Input Configuration. . ..................... 181
Twido Extreme PWM Input Configuration .. ...................... 186
Twido Extreme PWM Input Configuration Example. . ............... 188
Twido Extreme Output Configuration. . .. ........................ 194
Twido Extreme Discrete Output Configuration. . ................... 195
Twido Extreme Pulse (PLS) Generator Output Configuration......... 198
Twido Extreme PWM Output Configuration in Standard Mode . . .. .. .. 205
Twido Extreme PWM Output Configuration in Hydraulic Mode. . . ... .. 214
Twido Extreme Hydraulic PWM Output Configuration Example . . ... .. 222
Installing the AS-Interface V2bus .................. 225
Presentation of the AS-Interface V2Bus. . ....................... 226
General Functional Description . . ... ... . i 227
Software Setup Principles. . . ... ... ... 230
Description of the Configuration Screen for the AS-Interface Bus. . . . . . 232
Configuration of the AS-InterfaceBus . . .. .......... ... ... ...... 234
Description of the AS-Interface Window in Online Mode. .. .......... 240

35011386 05/2009



Modification of Slave Address. . .. ....... .o 244
Updating the AS-Interface Bus Configuration in Online Mode ......... 246
Automatic Addressing of an AS-Interface V2 Slave ................. 250
How to insert a Slave Device into an Existing AS-Interface V2

Configuration. . ... ... 251
Automatic Configuration of a Replaced AS-Interface V2 Slave ... ... .. 252

Addressing 1/0Os Associated with Slave Devices Connected to the AS-
Interface V2 BUS . . ... .. i 253
Programming and Diagnostics for the AS-Interface V2Bus........... 255
AS-Interface V2 Bus Interface Module Operating Mode: ............. 260
Chapter 10 Installing and Configuring the CANopen Fieldbus . . .. 261
10.1 CANopen Fieldbus Overview .. .......... . ..., 262
CANopen Knowledge Base. . ...t 263
About CANOPEN . . .o 264
CANOpPen Boot-Up .. ... 267
Process Data Object (PDO) Transmission ........................ 270
Access to Data by Explicit Exchanges (SDO). . .................... 272
“Node Guarding" and "Life Guarding" . .. ......... ... ... .. .. ..... 273
Internal Bus Management. . ......... . ... . 275
10.2 Implementingthe CANopenBus. . .......... ... ... . ... 276
OVBIVIBW . . .o e 277
Hardware Setup . ... ...t 279
CANOpen Configuration - Default Parameter. . .................... 280
Configuration Methodology . . . ........ ... 284
Declaration of a CANopen Master. . . ......... ... .. 286
CANopen Configuration Tool . ..... ... ... . ... ... .. 287
CANopen Network Slave Declaration. . .......................... 292
CANopen Objects Mapping (Slaves). . .. ... ... 300
CANopen Objects Linking (Master). .. ....... ... 304
CANopen Objects Symbols. . . ... 307
Addressing PDOs of the CANopenmaster. . ...................... 308
Programming and diagnostics for the CANopen fieldbus ... .......... 310
CANopen Hot Swap for Twido Controllers . ....................... 317
Chapter 11 Installing and Configuring the CANJ1939 Fieldbus ... 318
11.1 CANJ1939 Fieldbus Overview . ............ ... it 319
CANJ1939 Knowledge Base. . . ...t 320
CANJ19139 Parameter Group Number and Suspect Parameter Number 322
CANJ1939 Identifier .. ... 323
Communication on a CANJ1939 Network. .. .. ....... ... ... ... .. 325
11.2 Implementing the CANJ1939Bus. . ......... ... ... 326
CANJ1939 Implementation Overview . .. .......... ... ... ... 327
Hardware Setup . ... i e i e i 328
CANJ1939 Configuration Methodology. . . .......... ... ... ... ..... 329
CANJ1939 Configuration Dialog Boxes (Element, Network, Port) ... ... 332
Creating or Deleting CANJ1939 Transmit/Receive Objects ... ........ 335
35011386 05/2009 5



Chapter 12
12.1

12.2

12.3

Chapter 13

Part Il
Chapter 14

Viewing CANJ1939 Transmit/Receive objects. . .. ................. 343

CANJ1939 Broadcast Configuration .. ........... ... ... ........ 346
CANJ1939 Peer-to Peer Configuration . .. ....................... 348
CANJ1939 Configurationin ExpertMode . .. ..................... 350
CANJ1939 Input/Output Objects . . . ... ..o e 352
Requesta PGN Qutput . . ... . e 356
Configuring the TwidoPort Ethernet Gateway ........ 360
Normal Configuration and Connection of TwidoPort. . .............. 361
Normal Configuration with TwidoSuite. . . ............ ... ... ..... 362
BootP Configuration. . . ... ... 369
TwidoPort’s Telnet Configuration. .. ......... ... ... ... ... .... 370
Introducing Telnet Configuration . .. ............ ... ... .. .. ..... 371
TelnetMainMenu . ... e 372
IP/Ethernet Settings. . .. .. ..o 373
Serial Parameter Configuration .. . ......... ... .. . ... 374
Configuringthe Gateway . ... ...t 375
Security Configuration . .. ....... ... . . 377
Ethernet Statistics .. ........ .. . 378
Serial Statistics . .. ... 379
Saving the Configuration . ......... ... ... ... . 380
Restoring Default Settings. . .. .. ... 381
Upgrading the TwidoPort Firmware. .. ............ ... .. ... ..... 382
Forgot Your Password and/or IP Configuration?................... 384
Communication Features. . . ... .. i 385
Ethernet Features . ... ... ... . . . 386
Modbus/TCP Communications Protocol . ........................ 387
Locally Supported Modbus FunctionCodes ... ................... 388
Operator Display Operation ....................... 390
Operator Display . .. ....ou i 391
Controller Identification and State Information. . ................... 394
System Objects and Variables. . . ......... ... .. .. . i 396
Serial Port Settings . ........ .. 403
Timeof Day CloCK . . . .. oo 404
Real-Time Correction Factor . . .. ....... ... . i, 405
Description of Twido Languages .............. 408
LadderLanguage ............ciiiiiiininnnnnnnns 410
Introduction to Ladder Diagrams . .. .. ....... ... ... . ... 411
Programming Principles for Ladder Diagrams. . .. ................. 413
Ladder Diagram Blocks . . . ... ... e 415
Ladder Language GraphicElements. . .......... ... ... .. ....... 418
Special Ladder Instructions OPENand SHORT ................... 421

35011386 05/2009



Programming Advice. . .. ... ... . e 423
Ladder/List Reversibility . ......... .. . 428
Guidelines for Ladder/List Reversibility. . .. ......... ... ... ... ..... 430
Program Documentation. .. ......... ... ... . 432
Chapter 15 InstructionListLanguage ................ccvvunns 434
Overview of List Programs .. ....... ... ..o 435
Operation of List Instructions. . .. ......... ... ... . i 437
List Language Instructions . . ....... ... ... ... .. 438
Using Parentheses . ......... ... . . . i 441
Stack Instructions (MPS, MRD, MPP). ... ... .. ... ... ... .. ...... 444
Chapter16 Grafcet ...........cciiiiiiiiii it et innnnns 446
Description of Grafcet Instructions . ............................. 447
Description of Grafcet Program Structure. . . ............ ... ... .... 452
Actions Associated with Grafcet Steps . ... .......... ... ... L. 455
Part IV Description of Instructions and Functions ....... 458
Chapter 17 Basic Instructions ..................ccoiiiiinnnnn 460
17.1 Boolean Processing . .. ... ... 461
Boolean Instructions . . ... ... 462
Understanding the Format for Describing Boolean Instructions . . ... ... 464
Load Instructions (LD, LDN, LDR,LDF) . . ........ .. ... .. ... .... 466
Assignment instructions (ST, STN, R, S) ......... ... ... ... ....... 468
Logical AND Instructions (AND, ANDN, ANDR, ANDF) . ............. 470
Logical OR Instructions (OR, ORN, ORR,ORF). . .................. 472
Exclusive OR, instructions (XOR, XORN, XORR, XORF)............. 474
NOT Instruction (N) . . ... .ot 476
17.2 Basic FunctionBlocks. . ......... .. . 478
Basic Function Blocks. .. ... ... ... . . 479
Standard function blocks programming principles. . .. ............... 481
Timer Function Block (%TMi) .. ... ... e e 483
TOF Type of Timer . .. .o e 485
TONType of TImer . . ..o e 486
TP Type of Timer. . ... oo e 487
Programming and Configuring Timers . ...............coovu... 488
Up/Down Counter Function Block (%Ci). .. ... .. 491
Programming and Configuring Counters. .. ....................... 494
Shift Bit Register Function Block (%SBRi) ........................ 496
Step Counter Function Block (%SCi) .......... .. ... 499
17.3 Numerical Processing . . ... 502
Introduction to Numerical Instructions. . .......................... 503
Assignment Instructions .. ... ... .. 504
Comparison Instructions . . . ........ .. .. . . 509
Arithmetic Instructionsonintegers . ......... ... ... ... .. ... ..., 511
35011386 05/2009 7



Logic Instructions. . . . .. ... . 514

Shift Instructions .. ... .. 516
Conversion Instructions . . ... ... .. 518
Single/Double Word Conversion Instructions ..................... 520

17.4 Program Instructions . ......... ... . i 522
END INStructions . .. ... 523

NOP Instruction . . . .. ... 525

Jump Instructions. . . ... ... e 526
Subroutine Instructions . . ... ... . 528
Chapter 18 Advanced Instructions ....................ccoutt. 530
18.1 Advanced FunctionBlocks. . . ........ .. . i 531
Bit and Word Objects Associated with Advanced Function Blocks . . . . . 532
Programming Principles for Advanced Function Blocks . ............ 534
LIFO/FIFO Register Function Block (%Ri). . . ......... .. ... .. ..... 536

LIFO Operation . .. ... ... e 538

FIFO Operation . ........... i e e e 539
Programming and Configuring Registers. . .. ..................... 540

Pulse Width Modulation Function Block (%PWM). . ................ 543

Pulse Generator Output Function Block (%PLS). ... ............... 547

Drum Controller Function Block (%DR). .. ......... ... ... .. ..... 550

Drum Controller Function Block %DRi Operation . ................. 552
Programming and Configuring Drum Controllers. . . ................ 554

Fast Counter Function Block (%FC) .. ....... ... ... ... ... 556

Very Fast Counter Function Block (%VFC) ... .................... 559
Transmitting/Receiving Messages - the Exchange Instruction (EXCH). . 574
Exchange Control Function Block (%MSGX). .. ................... 575

18.2 Clock FUNCHONS . . . ..o 579
Clock FUNCHIONS . . . ..o 580
Schedule BIoCKS . .. ... . 581
Time/Date Stamping . .. ... 584
Settingthe Dateand Time. . .. ... . . i 586

18.3 Twido PID Quick Start Guide. . . ... 590
Purpose of Document . ...... ... ... . .. 591

Step 1 - Configuration of Analog Channels Used for Control ......... 593

Step 2 - Prerequisites for PID Configuration . ..................... 595

Step 3 - Configuringthe PID. .. ....... ... ... . i 597

Step 4 - Initialization of Control Set-Up . . ........... ... ... .. .... 603

Step 5-Control Set-Up AT +PID . ... 608

Step 6 - Debugging Adjustments. . ......... ... .. . . 612

18.4 PIDFUNCHON ... i 614
OVeIVIBW . .o e 615
Principal of the Regulation Loop .. .......... ... ... .. . . ... 616
Development Methodology of a Regulation Application ............. 617
Compatibilities and Performances. .. ......... ... ... ... ... ..., 618
Detailed Characteristics of the PID Function. .. ................... 619

35011386 05/2009



How to Access the PID Configuration. . .......... ... ... ... ... .... 624

PID Screen Elements of PID Function ........................... 625
General Tabof PIDfunction . . ........ ... .. . i 630

Input Tabofthe PID ....... ... .. . e 633

PID Tabof PID function. . . .. ... et 635

AT Tabof PID Function. . . ... . e 638
Output Tabofthe PID . ... ... . . e 644

How to Access PID Debugging. . ... ..o 647
Animation Tabof PID Function. . ........ ... ... ... ... ... ... .... 648
Trace Screenof PID Function. . .......... ... 651

PID Statesand Error Codes . ... ...t 653

PID Tuning with Auto-Tuning (AT) .. ...t e 657

PID Parameter Adjustment Method. . ... ......... ... ... ... ... .... 665

Role and Influence of PID Parameters . . ........... ... ... .. ..... 668
Appendix 1: PID Theory Fundamentals . ......................... 672
Appendix 2: First-Order with Time Delay Model .. .................. 674

18.5 Floating pointinstructions . . ......... ... ... i 676
Arithmetic Instructions on Floating Point. ... ......... ... ... ... .... 677
Trigonometric Instructions. . ......... ... .. . 681
Conversion instructions. . . .. ... .o 683
Integer Conversion Instructions <-> Floating .. .................... 685

18.6 ASCIlinstructions . . ... ... 688
ROUND Instruction . ... ... o e 689
ASCIl to Integer ConNVersion . . ... 691
Integer to ASCIHH Conversion . .. ...t e e 693
ASCIlto Float Conversion. .. ...t 695
Floatto ASCII Conversion. . ... e 697

18.7 Instructionson Object Tables . . ......... ... ... .. . ... .. 699
Table Summing Functions. . ......... ... ... . 700

Table Comparison Functions . ............ ... ... 702

Table Search Functions ............ ... . ... . .. 704

Table Search Functions for Maximum and Minimum Values . ......... 706
Number of Occurrences of a ValueinaTable ..................... 707

Table Rotate Shift Function . ........ ... ... ... .. . . .. .. 708

Table Sort Function . ......... .. . 710
Floating Point Table interpolation Function. .. ..................... 712

Mean Function of the Values of a Floating Point Table .............. 717
Chapter 19 System Bits and SystemWords ................... 718
System Bits (%S) . . ..o 719
System Words (%eSW). . .. .o 727
GloSSArY . ...i'iiiiiiinnnne ettt 742
IndeX ... .. i e e e 758

35011386 05/2009 9



10

35011386 05/2009



Safety Information =

Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with
the device before trying to install, operate, or maintain it. The following special
messages may appear throughout this documentation or on the equipment to warn
of potential hazards or to call attention to information that clarifies or simplifies a
procedure.

injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential
personal injury hazards. Obey all safety messages that follow this

The addition of this symbol to a Danger or Warning safety label
indicates that an electrical hazard exists, which will result in personal
A symbol to avoid possible injury or death.

A DANGER

DANGER indicates an imminently hazardous situation which, if not avoided,
will result in death or serious injury.

A WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, can
result in death or serious injury.

35011386 05/2009 11



PLEASE NOTE

A CAUTION

CAUTION indicates a potentially hazardous situation which, if not avoided, can
result in minor or moderate injury.

CAUTION

CAUTION, used without the safety alert symbol, indicates a potentially
hazardous situation which, if not avoided, can result in equipment damage.

Electrical equipment should be installed, operated, serviced, and maintained only by
qualified personnel. No responsibility is assumed by Schneider Electric for any
consequences arising out of the use of this material.

12

35011386 05/2009



About the Book

At a Glance

Document Scope

This is the Software Reference manual for Twido programmable controllers and
consists of the following major parts:

e Description of the Twido programming software and an introduction to the
fundamentals needed to program Twido controllers.

e Description of communications, managing analog I/O, installing the AS-Interface
bus interface module, the CANopen fieldbus master module and other special
functions.

e Description of the software languages used to create Twido programs.

e Description of instructions and functions of Twido controllers.

Validity Note

The information in this manual is applicable only for Twido programmable
controllers. This documentation is valid for TwidoSuite Version 2.2.

User Comments

We welcome your comments about this document. You can reach us by e-mail at
techcomm @schneider-electric.com.

35011386 05/2009 13



14

35011386 05/2009



Description of Twido Software

Subject of this Part

This part provides an introduction to the software languages and the basic
information required to create control programs for Twido programmable controllers.

What's in this Part?
This part contains the following chapters:

Chapter Chapter Name Page
1 Introduction to TwidoSuite 17
2 Twido Language Objects 23
3 User Memory 51
4 Event task management 63

35011386 05/2009 15




Twido Software

16

35011386 05/2009



Introduction to TwidoSuite

Subject of this Chapter

This chapter provides a brief introduction to TwidoSuite, the programming and
configuration software for Twido controllers, and to the List, Ladder, and Grafcet
programming languages.

What's in this Chapter?
This chapter contains the following topics:

Topic Page
Introduction to TwidoSuite 18
Introduction to Twido Languages 19

35011386 05/2009



TwidoSuite Languages

Introduction to TwidoSuite

Introduction

TwidoSuite is a full-featured, graphical development environment for creating,
configuring, and maintaining automation applications for Schneider Electric Twido
programmable controllers. TwidoSuite allows you to create programs with different
types of languages (see page 19), and then transfer the application to run on a
controller.

TwidoSuite

TwidoSuite is a 32-bit Windows-based program for a personal computer (PC)
running Microsoft Windows 2000/XP Professional/Vista operating systems.

The main software features of TwidoSuite:

e Project-oriented, intuitive user-interface

e Menu-free software design. All tasks and functions of a selected project step
show at all times.

e Programming and configuration support

e Communication with controller

e Task-level, first-hand help providing relevant links to the online help

NOTE: The Controller-PC link uses the TCP/IP protocol. It is essential for this
protocol to be installed on the PC.

Minimum configuration
The minimum configuration for using TwidoSuite is:

e PC-compatible computer with
e processor Pentium 466 MHz or higher recommended,
e 128 MB of RAM or higher recommended,
e 100 MB of hard disk space.

e Operating system : Windows 2000, Windows XP or Windows Vista:
e Avoid patch 834707-SP1 (corrected by patch 890175) and patch 896358
which cause display problems with Online Help.
e Service Pack 2 or higher recommended. Available for download from
www.microsoft.com web site.

18 35011386 05/2009



TwidoSuite Languages

Introduction to Twido Languages

Introduction

Twido Languages

A programmable controller reads inputs, writes to outputs, and solves logic based
on a control program. Creating a control program for a Twido controller consists of
writing a series of instructions in one of the Twido programming languages.

The following languages can be used to create Twido control programs:

e Instruction List Language:

An Instruction List program is a series of logical expressions written as a
sequence of Boolean instructions.

e Ladder Diagrams:

A Ladder diagram is a graphical means of displaying a logical expression.

e Grafcet Language:

Grafcet language is made up of a series of steps and transitions. Twido supports
the use of Grafcet list instructions, but not graphical Grafcet.

You can use a personal computer (PC) to create and edit Twido control programs
using these programming languages.

A List/Ladder reversibility feature allows you to conveniently reverse a program from
Ladder to List and from List to Ladder.

Instruction List Language

A program written in Instruction List language consists of a series of instructions
executed sequentially by the controller. The following is an example of a List

program.

= 0 00 =1 O Lok W= D

BLK  %C8
LDI"  %l0.1
R

LD  %I0.2
AND  %MO
cu

OUT BLK

LD D
AND %M1
ST %Q0.4
END_BLK

35011386 05/2009

19



TwidoSuite Languages

Ladder Diagrams

Ladder diagrams are similar to relay logic diagrams that represent relay control
circuits. Graphic elements such as coils, contacts, and blocks represent instructions.

The following is an example of a Ladder diagram.

w0 i
—Nii - R

%02 MO
—

}7

D

e
SADJY

WCBP 777
Cu

F

Dy,

T
'

THa0 4
%

20

35011386 05/2009



TwidoSuite Languages

Grafcet Language

The Grafcet analytical method divides any sequential control system into a series of
steps, with which actions, transitions, and conditions are associated. The following
illustration shows examples of Grafcet instructions in List and Ladder programs

respectively.

= W 0 R w N = O

%M10

35011386 05/2009

21



TwidoSuite Languages

22

35011386 05/2009



Twido Language Objects

Subject of this Chapter

This chapter provides details about the language objects used for programming

Twido controllers.

What's in this Chapter?

This chapter contains the following topics:

Topic Page
Language Object Validation 24
Bit Objects 25
Word Objects 27
Floating Point and Double Word Objects 30
Addressing Bit Objects 34
Addressing Word Objects 35
Addressing Floating Objects 36
Addressing Double Word Objects 37
Addressing Inputs/Outputs 38
Network Addressing 41
Function Block Objects 42
Structured Objects 44
Indexed Objects 48
Symbolizing Objects 50
35011386 05/2009 23




Twido Language Objects

Language Object Validation

Introduction

Example

Word and bit objects are valid if memory space has been allocated in the controller.
To do this, they must be used in the application before they are downloaded to the
controller.

The range of valid objects is from zero to the maximum reference for that object type.
For example, if your application's maximum references for memory words is %MW9,
then %MWO through %MW9 are allocated space. %MW10 in this example is not
valid and can not be accessed either internally or externally.

24

35011386 05/2009



Twido Language Objects

Bit Objects

Introduction

Bit objects are bit-type software variables that can be used as operands and tested
by Boolean instructions. The following is a list of bit objects:

1/0 bits

Step bits

List of Operand Bits

The following table lists and describes all of the main bit objects that are used as
operands in Boolean instructions.

Internal bits (memory bits)
System bits

Bits extracted from words

of the controller and the
correct running of the
application program.

Type Description Address or | Maximum Write
value number access (1)
Immediate |0 or 1 (False or True) Oori1 - -
values
Inputs These bits are the "logical %lx.y.z (2) Note (3) No
Outputs images" of the electrical %Qx.y.z (2) Yes
states of the 1/0. They are
stored in data memory and
updated during each scan of
the program logic.
AS-Interface | These bits are the "logical Note (4)
Inputs images" of the electrical %lAX.y.z No
Outputs states of the 1/0. They are %QAX.y.z Yes
stored in data memory and
updated during each scan of
the program logic.
Internal Internal bits are internal YoMi 128 Yes
(Memory) memory areas used to store TWDLC-A10DRF,
intermediary values while a TWDLC-A16DRF
program is running. 256 All other
Note: Unused I/O bits can not controllers
be used as internal bits.
System System bits %S0 to %S127 | %Si 128 According
monitor the correct operation toi

35011386 05/2009

25




Twido Language Objects

Type Description Address or | Maximum Write
value number access (1)
Function The function block bits %TMi.Q, Note (3) No (5)
blocks correspond to the outputs of | %Ci.P, and
the function blocks. SO on.
These outputs may be either
directly connected or used as
an object.
Reversible | Function blocks programmed | E, D, F, Q, Note (3) No
function using reversible programming | THO, TH1
blocks instructions BLK, OUT_BLK,
and END_BLK.
Word One of the 16 bits in some Variable Variable Variable
extracts words can be extracted as
operand bits.
Grafcet Bits %X1 to %Xi are Yo Xi 62 Yes
steps associated with Grafcet TWDLC*A10DRF,
steps. Step bit Xi is set to 1 TWDLCe*A16 DRF
when the corresponding step 96
is active, and set to 0 when TWDLCeA24DRF,
the step is deactivated. TWDLCA+*40DRF
and Modular
controllers
Legends:

1. Written by the program or by using the Animation Tables Editor.

2. See I/O Addressing.

3. Number is determined by controller model.

4. Where, x = address of the expansion module (0..7); y = AS-Interface address
(0A..31B); z = channel number (0..3). (See Addressing I/Os Associated with
Slave Devices Connected to the AS-Interface V2 Bus, page 253.)

5. Except for %SBRi.j and %SCi.j, these bits can be read and written.

26

35011386 05/2009




Twido Language Objects

Word Objects

Introduction

Word Formats

Word objects that are addressed in the form of 16-bit words that are stored in data
memory and can contain an integer value between -32768 and 32767 (except for
the fast counter function block which is between 0 and 65535).

Examples of word objects:

Immediate values

Internal words (%MWi) (memory words)

Constant words (%KWi)

I/0 exchange words (%IWi, %QWi%)

AS-Interface analog I/O words (IWAi, %QWAI)
System words (%SWi)

Function blocks (configuration and/or runtime data)

The contents of the words or values are stored in user memory in 16-bit binary code
(two's complement) using the following convention:

FEDCBA® 87 6543210 Bit position

[o[1]o]1]ofo1]o]o]1]o]o[1][1]0]1] Bitstate

<

N © © <

) N © ®

o @ = T o © ;
IR I23 03859 Y0 o - @< o~ Bivalue
LCox A~

In signed binary notation, bit 15 is allocated by convention to the sign of the coded

value:

e Bit 15 is set to 0: the content of the word is a positive value.

e Bit 15 is set to 1: the content of the word is a negative value (negative values are
expressed in two's complement logic).

Words and immediate values can be entered or retrieved in the following format:
e Decimal
Min.: -32768, Max.: 32767 (1579, for example)
e Hexadecimal
Min.: 16#0000, Max.: 16#FFFF (for example, 16#A536)
Alternate syntax: #A536
e ASCII format rules as follows:
e The function always reads the Most Significant Byte first.
o Any ASCII character that is not in the interval ['0' - '9'] ([16#30 - 16#39)]) is
considered to be an end character, except for a minus sign '-' (16#2D ) when
it is placed as the first character.

35011386 05/2009

27



Twido Language Objects

e In case of overflow (>32767 or <-32768), the system bit %S18 (arithmetic
overflow or error) is set to 1 and 32767 or -32768 value is returned.

e [f the first character of the operand is an "end" character, the value 0 is
returned and the bit %S18 is set to 1.

for example, "HELLO":

e MWO
o MWl
e SMW2

Descriptions of Word Objects

.= "HE"
.= "L
o= "O n

The following table describes the word objects.

Words Description Address or Maximum | Write
value number access (1)
Immediate These are integer values that are - No
values in the same format as the 16-bit
words, which enables values to
be assigned to these words.
Base 10 -32768 to
32767
Base 16 16#0000 to
16#FFFF
Internal Used as "working" words to store | %MWi 3000 Yes
(Memory) values during operation in data
memory.
Constants Store constants or alphanumeric | %KWi 256 Yes,
messages. Their content can only only by
be written or modified by using using
TwidoSuite during configuration. TwidoSuite
System These 16-bit words have several | %SWi 128 According
functions: toi
® Provide access to data coming
directly from the controller by
reading %SWi words.)

® Perform operations on the
application (for example,
adjusting schedule blocks).

Function These words correspond to %TM2.P, Yes

blocks current parameters or values of | %Ci.P, etc.

function blocks.

28

35011386 05/2009




Twido Language Objects

Words Description Address or Maximum | Write
value number access (1)
Network Assigned to controllers connected
exchange as Remote Links. These words
words are used for communication
between controllers:
Network Input %INWi.j 4 per No
remote link
Network Output %QNWi.j 4 per Yes
remote link
Analog I/0 Assigned to analog inputs and
words outputs of AS-Interface slave
modules.
Analog Inputs %IWAX.y.z Note (2) No
Analog Outputs %QWAX.y.z Note (2) Yes
Extracted It is possible to extract one of the
bits 16 bits from the following words:
Internal %MWi:Xk 1500 Yes
System %SWi:Xk 128 Depends
oni
Constants Y%KWi:Xk 64 No
Input %IWi.j: Xk Note (3) No
Output %QWi.j:Xk Note (3) Yes
AS-Interface Slave Input %IWAXx.y.z:Xk | Note (3) No
AS-Interface Slave Output %QWAX.y.z:X | Note (3) Yes
k
Network Input %INWi.j:Xk Note (3) No
Network Output %QNWi.j:Xk Note (3) Yes
NOTE:

1. Written by the program or by using the Animation Tables Editor.

2. Where, x = address of the expansion module (0..7); y = AS-Interface address
(0A..31B); z = channel number (0..3). (See Addressing I/Os Associated with
Slave Devices Connected to the AS-Interface V2 Bus, page 253.)

3. Number is determined by the configuration.

35011386 05/2009

29




Twido Language Objects

Floating Point and Double Word Objects

Introduction

TwidoSuite allows you to perform operations on floating point and double integer
word objects.

A floating point is a mathematical argument which has a decimal in its expression
(examples: 3.4E+38, 2.3 or 1.0).

A double integer word consists of 4 bytes stored in data memory and containing a
value between -2147483648 and +2147483647.

Floating Point Format and Value

The floating format used is the standard IEEE STD 734-1985 (equivalent IEC 559).
The length of the words is 32 bits, which corresponds to the single decimal point
floating numbers.

Table showing the format of a floating point value:

Bit 31 Bits {30...23} | Bits {22...0}

S Exponent Fractional part

The value as expressed in the above format is determined by the following equation:

32-bit Floating Value = 1® * 2@t *1.Fractional part

Floating values can be represented with or without an exponent; but they must
always have a decimal point (floating point).

Floating values range from -3.402824e+38 to -1.175494e-38 and 1.175494e-38 to
3.402824e+38 (grayed values on the diagram). They also have the value 0, written
0.0

-1.#INF -1.#DN  1.#DN 1.#INF

-3.402824e+38 -1.175494e-38 0 +1.175494e-38 +3.402824e+38

When a calculation result is:

e Less than -3.402824e+38, the symbol -1.#INF (for -infinite) is displayed,

e Greater than +3.402824e+38, the symbol 1.#INF (for +infinite) is displayed,

o Between-1.175494e-38 and 1.175494e-38, it is rounded off to 0.0. A value within
these limits cannot be entered as a floating value.

e Indefinite (for example the square root of a negative number) the symbol 1.#NAN
or -1.#NAN is displayed.

30

35011386 05/2009



Twido Language Objects

Representation precision is 2-24. To display floating point numbers, it is
unnecessary to display more than 6 digits after the decimal point.

NOTE:

e the value "1285" is interpreted as a whole value; in order for it to be recognized

as a floating point value, it must be written thus: "1285.0"

Limit range of Arithmetic Functions on Floating Point

The following table describes the limit range of arithmetic functions on floating point

objects

Arithmetic Funtion

Limit range and invalid operations

Type Syntax #QNAN (Invalid) #INF (Infinite)
Square root of an SQRT(x) x<0 x> 1.7E38
operand

Power of an integer | EXPT(y, x) x<0 y.In(x) > 88

by a real (where:

EXPT(%MF,%MW) | xAy = %MWA%MF)

Base 10 logarithm LOG(x) x<=0 x > 2.4E38
Natural logarithm LN(x) x<=0 x > 1.65E38
Natural exponential | EXP(x) x<0 x > 88.0

Hardware compatibility

Floating point and double word operations are not supported by all Twido

controllers.

The following table shows hardware compatibility:

Twido controller Double words | Floating
supported points
supported

TWDLMDA40DUK | Yes Yes
TWDLMDA40DTK | Yes Yes
TWDLMDA20DUK | Yes No
TWDLMDA20DTK | Yes No
TWDLMDA20DRT | Yes Yes
TWDLCe*40DRF Yes Yes
TWDLCeA24DRF Yes No
TWDLC-A16DRF Yes No
TWDLC-A10DRF No No

35011386 05/2009

31




Twido Language Objects

Validity Check

When the result is not within the valid range, the system bit %S18 is set to 1.

The status word %SW17 bits indicate the cause of a detected error in a floating

operation:

Different bits of the word %SW17:

%SW17:X0 | Invalid operation, result is not a number (1.#NAN or -1.#NAN)

%SW17:X1 | Reserved

%SW17:X2 | Divided by 0, result is infinite (-1.#INF or 1.#INF)

%SW17:X3 | Result greater in absolute value than +3.402824e+38, result is infinite (-1.#INF

or 1.#INF)

%SW17:X4 | Reserved
to X15

This word is reset to 0 by the system on cold start, and also by the program for re-

usage purposes.

Description of Floating Point and Double Word Objects

The following table describes floating point and double word objects:

Type of object Description Address | Maximum | Write access Indexed form
number
Immediate values Integers (double word) or - [-] No -
decimal (floating point)
numbers with identical
format to 32 bit objects.
Internal floating point | Objects used to store values | %MFi 1500 Yes (ODM/T) %MFi[index]
Internal double word | during operation in data %MDi | 1500 Yes (ODM/T) %MDifindex]
memory.
Floating constant Used to store constants. %KFi 128 Yes, (T) %KFi[index]
value
Double constant %KDi 128 Yes, (T) %KDi[index]

Note:

1. ODM: Write access using the Operator Display Module (see Operator Display Operation,

page 390)

2. T: Write access using TwidoSuite

32

35011386 05/2009




Twido Language Objects

Possibility of Overlap between Objects

Single, double length and floating words are stored in the data space in one memory
zone. Thus, the floating word %MFi and the double word %MDi correspond to the

single length words %MWi and %MWi+1 (the word %MWi containing the least

significant bits and the word %MWi+1 the most significant bits of the word %MFi).

The following table shows how floating and double internal words overlap:

ating and double constants overlap:

Floating Odd Internal
and address words
Double

%MFO / %MWO
%MDO  [oMF1/ | %MW1
%MF2/ | %MD1 %MW2
%MD2  ToMF3/ | %MW3
%MF4/ | %MD3 %MW4
%MD4 o%uMW5

%MFi/ | %MWi

%MFi+1/ | %MDi %MWi+1
%MDi+1

The following table shows how flo
Floating |Odd Internal
and address words
Double

%KFO / %KWO
%KDO %KF1/ | %KW1
%KF2/ | 7KD1 %KW2
%KD2 %KF3/ | %KW3
%KF4/ | %KD3 %KW4
%KD4 %KWS5

%kFi / %KWi

%KFi+1/ | 7okDi %KWi+1
%KDi+1

Example:

%MFO0 corresponds to %MWO0 and %MW1. %KF543 corresponds to %KW543 and

%KW544.

35011386 05/2009

33



Twido Language Objects

Addressing Bit Objects

Syntax
Use the following format to address internal, system, and step bit objects:

‘Symbol ‘Object type Number

Description
The following table describes the elements in the addressing format.

Group Item Description
Symbol % The percent symbol always precedes a software variable.
Type of M Internal bits store intermediary values while a program is
object running.
S System bits provide status and control information for the
controller.
X Step bits provide status of step activities.
Number i The maximum number value depends on the number of objects
configured.

Examples of bit object addressing:

® %M25 = internal bit number 25
® %S20 = system bit number 20
® %X6 = step bit number 6

Bit Objects Extracted from Words

TwidoSuite is used to extract one of the 16 bits from words. The address of the word
is then completed by the bit row extracted according to the following syntax:

Word address Position k=0 - 15 bit
rank in the word address.
Examples:

o %MWS5:X6 = bit number 6 of internal word %MW5
o %QWS5.1:X10 = bit number 10 of output word %QWS5.1

34 35011386 05/2009



Twido Language Objects

Addressing Word Objects

Introduction

Addressing word objects, except for input/output addressing (see Addressing
Inputs/Outputs, page 38) and function blocks (see Function Block Objects,
page 42), follows the format described below.

Syntax
Use the following format to address internal, constant and system words:

‘Symbol ‘Object type Format Number

Description
The following table describes the elements in the addressing format.

Group Item Description

Symbol % The percent symbol always precedes an internal
address.

Type of object M Internal words store intermediary values while a

program is running.

K Constant words store constant values or alphanumeric
messages. Their content can only be written or modified
by using TwidoSuite.

S System words provide status and control information for
the controller.
Syntax w 16-bit word.
Number i The maximum number value depends on the number of

objects configured.

Examples of word object addressing:

o %MW15 = internal word number 15
o %KW26 = constant word number 26
® %SW30 = system word number 30

35011386 05/2009 35



Twido Language Objects

Addressing Floating Objects

Introduction

Syntax

Description

Addressing floating objects, except for input/output addressing (see Addressing
Inputs/Outputs, page 38) and function blocks (see Function Block Objects,
page 42), follows the format described below.

Use the following format to address internal and constant floating objects:

‘ Symbol IType of object Syntax Number

The following table describes the elements in the addressing format.

Group Item Description

Symbol % The percent symbol always precedes an internal
address.

Type of object M Internal floating objects store intermediary values while
a program is running.

K Floating constants are used to store constant values.

Their content can only be written or modified by using
TwidoSuite.

Syntax F 32 bit object.

Number i The maximum number value depends on the number of

objects configured.

Examples of floating object addresses:

e %MF15 = internal floating object number 15
o %KF26 = constant floating object number 26

36

35011386 05/2009




Twido Language Objects

Addressing Double Word Objects

Introduction

Addressing double word objects, except for input/output addressing (see
Addressing Inputs/Outputs, page 38) and function blocks (see Function Block
Objects, page 42), follows the format described below.

Syntax
Use the following format to address internal and constant double words:
| Symbol IType of object Syntax Number
Description
The following table describes the elements in the addressing format.
Group Item Description
Symbol % The percent symbol always precedes an internal
address.
Type of object M Internal double words are used to store intermediary
values while a program is running.

K Constant double words store constant values or
alphanumeric messages. Their content can only be
written or modified by using TwidoSuite.

Syntax D 32 bit double word.
Number i The maximum number value depends on the number of
objects configured.

Examples of double word object addressing:

o %MD15 = internal double word number 15
o %KD26 = constant double word number 26

35011386 05/2009

37




Twido Language Objects

Addressing Inputs/Outputs

Introduction

Each input/output (I/O) point in a Twido configuration has a unique address: For
example, the address "%10.0.4" is assigned to input 4 of a controller.

I/0 addresses can be assigned for the following hardware:

e Controller configured as Remote Link Master
e Controller configured as Remote 1/0
e Expansion 1/0O modules

The TWDNOI10M3 AS-Interface bus interface module and the TWDNCO1M

CANopen fieldbus module each uses its own special address system for addressing

the 1/Os of slave devices connected to its bus:

e For TWDNOI10M3, see Addressing I/Os Associated with Slave Devices
Connected to the AS-Interface V2 Bus, page 253.

e For TWDNCO1M, see Addressing PDOs of the CANopen master, page 308.

Multiple References to an Output or Coil

In a program, you can have multiple references to a single output or coil. Only the
result of the last one solved is updated on the hardware outputs. For example,
%Q0.0.0 can be used more than once in a program, and there will not be an alert for
multiple occurrences. So it is important to confirm that the equation will give the
required status of the output.

A CAUTION

UNINTENDED OPERATION

Review the use of the outputs or coils before making changes to them in your
application. There is no duplicate output checking or status indications provided.

Failure to follow these instructions can result in injury or equipment damage.

38

35011386 05/2009




Twido Language Objects

Format
Use the following format to address inputs/outputs.
% I, Q X . .
‘Symbol ‘Object type Controller ‘point ‘ 11O type ‘ point ‘ Channel number
position
Use the following format to address inputs/output exchange words.
% l, Q w X .
‘Symbol ‘Object type Format Controller | point ‘IIO Type
position
Description

The table below describes the 1/0 addressing format.

Group Item Value Description

Symbol % - The percent symbol always precedes an internal
address.

Object type - Input. The "logical image" of the electrical state of
a controller or expansion I/O module input.

Q - Output. The "logical image" of the electrical state

of a controller or expansion I/O module output.

Controller X 0 Master controller (Remote Link master).

position 1-7 Remote controller (Remote Link slave).

1/0 Type y 0 Base /O (local I/O on controller).

1-7 Expansion 1/0 modules.
Channel z 0-31 1/O channel number on controller or expansion
Number 1/0 module. Number of available I/O points

depends on controller model or type of
expansion I/O module.

35011386 05/2009 39



Twido Language Objects

Examples

The table below shows some examples of /0 addressing.

1/0 object Description

%I0.0.5 Input point number 5 on the base controller (local 1/O).

%Q0.3.4 Output point number 4 on the expansion 1/0 module at address 3 for
the controller base (expansion 1/O).

%I10.0.3 Input point number 3 on base controller.

%I13.0.1 Input point number 1 on remote I/O controller at address 3 of the
remote link.

%I10.3.2 Input point number 2 on the expansion I/O module at address 3 for

the controller base.

40

35011386 05/2009




Twido Language Objects

Network Addressing

Introduction

Application data is exchanged between peer controllers and the master controller on
a Twido Remote Link network by using the network words %INW and %QNW. See
Communications, page 71 for more details.

Format
Use the following format for network addressing.

% IN,QN w X o
|Symbo| ‘Object type ‘ Format ‘ Controller ‘ point ‘Word
position

Description of Format
The table below describes the network addressing format.

Group Element | Value Description

Symbol % - The percent symbol always precedes an internal
address.

Object type IN - Network input word. Data transfer from master to
peer.

QN - Network output word. Data transfer from peer to

master.

Format w - A16-bit word.

Controller X 0 Master controller (Remote Link master).

position 1-7 Remote controller (Remote Link slave).

Word j 0-3 Each peer controller uses from one to four words
to exchange data with the master controller.

Examples
The table below shows some examples of networking addressing.

Network object Description
%INW3.1 Network word number 1 of remote controller number 3.
%QNWO0.3 Network word number 3 of the base controller.

35011386 05/2009 41



Twido Language Objects

Function Block Objects

Introduction

Function blocks provide bit objects and specific words that can be accessed by the
program.

Example of a Function Block
The following illustration shows a counter function block.

%Ci
—R E

5 ADIY D

%Ci.P 9999
U

Up/down counter block

Bit Objects

Bit objects correspond to the block outputs. These bits can be accessed by Boolean
test instructions using either of the following methods:

e Directly (for example, LD E) if they are wired to the block in reversible
programming (see Standard function blocks programming principles, page 481).
e By specifying the block type (for example, LD %Ci.E).

Inputs can be accessed in the form of instructions.

Word Objects
Word objects correspond to specified parameters and values as follows:

e Block configuration parameters: some parameters are accessible by the program
(for example, pre-selection parameters), and some are inaccessible by the
program (for example, time base).

e Current values: for example, %Ci.V, the current count value.

42 35011386 05/2009



Twido Language Objects

Double word Objects

Double word objects increase the computational capability of your Twido controller
while executing system functions, such as fast counters (%FC), very fast counters
(%VFC) and pulse generators (%PLS).

Addressing of 32-bit double word objects used with function blocks simply consists
in appending the original syntax of the standard word objects with the "D" character.
The following example, shows how to address the current value of a fast counter in
standard format and in double word format:

o %FCi.V is current value of the fast counter in standard format.
o %FCi.VD is the current value of the fast counter in double word format.

NOTE: Double word objects are not supported by all Twido controllers. Refer to
Hardware compatibility, page 31 to find out if your Twido controller can
accommodate double words.

Objects Accessible by the Program

See the following appropriate sections for a list of objects that are accessible by the
program.

e For Basic Function Blocks, see Basic Function Blocks, page 479.
e For Advanced Function Blocks, see Bit and Word Objects Associated with
Advanced Function Blocks, page 532.

35011386 05/2009

43



Twido Language Objects

Structured Objects

Introduction

Structured objects are combinations of adjacent objects. Twido supports the
following types of structured objects:

Bit Strings

e Tables of words

e Tables of double words

e Tables of floating words

Bit Strings
Bit strings are a series of adjacent object bits of the same type and of a defined
length (L).
Example:Bit string %M8:6
%M8 %M9  %M10  %M11  %M12  %M13
NOTE: %M8:6 is acceptable (8 is a multiple of 8), while %M10:16 is unacceptable
(10 is not a multiple of 8).
Bit strings can be used with the Assignment instruction (see Assignment
Instructions, page 504).
44 35011386 05/2009



Twido Language Objects

Available Types of Bits
Available types of bits for bit strings:

Tables of words

Type Address Maximum size Write access
Discrete input bits | %I0.0:L or %I1.0:L (1) 0<L<17 No
Discrete output %Q0.0:L or %Q1.0:.L (1) |0<L<17 Yes

bits

System bits %Si:L 0<L<17 and i+L< 128 Depending on i
with i multiple of 8
Grafcet Step bits | %Xi:L 0<L<17 and i+L< 95 (2) |Yes (by
with i multiple of 8 program)
Internal bits %Mi:L O<L<17 and i+L< 256 (3) | Yes
with i multiple of 8
Key:

1. Only 1/O bits 0 to 16 can be read in bit string. For controllers with 24 inputs and
32 1/0 modules, bits over 16 cannot be read in bit string.

2. Maximum of i+L for TWWDLCAA10DRF and TWDLCAA16DRF is 62
3. Maximum of i+L for TWWDLCAA10DRF and TWDLCAA16DRF is 128
NOTE: 3M10:=%M2 XORR %M1 corresponds to $M10:=%M2 OR.

Word tables are a series of adjacent words of the same type and of a defined length

(L).

Example:Word table %KW10:7

%KW10

16 bits

%KW16

Word tables can be used with the Assignment instruction (see Assignment
Instructions, page 504).

35011386 05/2009

45



Twido Language Objects

Available Types of Words
Available types of words for word tables:

Type Address Maximum size Write access
Internal words %MWi:L 0<L<256 and i+L< 3000 Yes

Constant words Y%KWi:L 0<L<256 and i+L< 256 No

System Words %SWi:L O<L and i+L<128 Depending on i

Tables of double words

Double word tables are a series of adjacent words of the same type and of a defined
length (L).

Example:Double word table %KD10:7

%KD 11 %KD13  %KD15 %KD17 %KD19  %KD21

16 Bit

%KD10 %KD12 wKD14  %KD16 %KD18  %KD20  %KD22

Double word tables can be used with the Assignment instruction (see Assignment
Instructions, page 504).

Available Types of Double Words
Available types of words for double word tables:

Type Address Maximum size Write access
Internal words %MDi:L 0<L<256 and i+L< 3000 Yes
Constant words %KDi:L O<L and i+L< 256 No

46 35011386 05/2009



Twido Language Objects

Tables of floating words

Floating word tables are a series of adjacent words of the same type and of a defined
length (L).

Example: Floating point table %KF10:7

%KF11 %KF13  %KF15  %KF17  %KF19 %KF21

16 Bit

%KF10 %KF12 %KF14  %KF16  %KF18  %KF20 YKF22

Floating point tables can be used with the Assignment instruction (see Advanced
instructions).

Types of Floating Words Available
Available types of words for floating word tables:

Type Address Maximum size Write access
Internal words %MFi:L 0<L<256 and i+L< 3000 |Yes
Constant words %KFi:L O<L and i+L<256 No

35011386 05/2009 47



Twido Language Objects

Indexed Objects

Introduction

Direct Addressing

An indexed word is a single or double word or floating point with an indexed object
address. There are two types of object addressing:

e Direct addressing
e |ndexed addressing

A direct address of an object is set and defined when a program is written.
Example: %M26 is an internal bit with the direct address 26.

Indexed Addressing

An indexed address of an object provides a method of modifying the address of an
object by adding an index to the direct address of an object. The content of the index
is added to the object’s direct address. The index is defined by an internal word
%MWi. The number of "index words" is unlimited.

Example: %MW108[%MW?2] is a word with an address consisting of the direct
address 108 plus the contents of word %MW2.

If word %MW?2 has a value of 12, writing to %MW108[%MW?2] is equivalent to writing
to %MW120 (108 plus 12).

Objects Available for Indexed Addressing

The following are the available types of objects for indexed addressing.

Type Address Maximum size Write access
Internal words YoMWI[MWij] 0< i+%MW;j<3000 Yes

Constant words Y%KWi[%eMW]] 0< i+%MW;j<256 No

Internal double words | %MDI[MWj|] 0< i+%MW;j<2999 Yes

Double constant %KDIi[%MWi;] 0< i+%MWij<255 No

words

Internal floating %MFi[MW]] 0< i+%MW;j<2999 Yes

points

Constant floating %KFi[%MWj] 0< i+%MWij<255 No

points

48

35011386 05/2009




Twido Language Objects

Indexed objects can be used with the assignment instructions (see Assignment
Instructions, page 504 for single and double words) and in comparison instructions
(see Comparison Instructions, page 509 for single and double words). This type of
addressing enables series of objects of the same type (such as internal words and
constants) to be scanned in succession, by modifying the content of the index object
via the program.

Index Overflow System Bit %S20

An overflow of the index occurs when the address of an indexed object exceeds the

limits of the memory zone containing the same type of object. In summary:

e The object address plus the content of the index is less than 0.

e The object address plus the content of the index is greater than the largest word
directly referenced in the application. The maximum number is 2999 (for words
%MWi) or 255 (for words %KWi).

In the event of an index overflow, the system sets system bit %S20 to 1 and the
object is assigned an index value of 0.

NOTE: The user is responsible for monitoring any overflow. Bit %S20 must be read
by the user program for possible processing. The user must confirm that it is reset
to 0.

%S20 (initial status = 0):
e On index overflow: set to 1 by the system.
e Acknowledgment of overflow: set to 0 by the user, after modifying the index.

35011386 05/2009

49



Twido Language Objects

Symbolizing Objects

Introduction

Example

You can use Symbols to address TwidoSuite language objects by name or
customized mnemonics. Using symbols allows for quick examination and analysis
of program logic, and greatly simplifies the development and testing of an
application.

For example, WASH_END is a symbol that could be used to identify a timer function
block that represents the end of a wash cycle. Recalling the purpose of this name
should be easier than trying to remember the role of a program address such as
%TM3.

Guidelines for Defining Symbols

Editing Symbols

The following are guidelines for defining symbols:

e A maximum of 32 characters.

e Letters (A-Z), numbers (0 -9), or underscores (_).

e First character must be an alphabetical or accented character. You can not use
the percentile sign (%).

e Do not use spaces or special characters.

o Not case-sensitive. For example, Pump1 and PUMP1 are the same symbol and
can only be used once in an application.

Symbols are defined and associated with language objects in the Symbol Editor.
Symbols and their comments are stored with the application on the PC hard drive,
but are not stored on the controller. Therefore, they can not be transferred with the
application to the controller.

50

35011386 05/2009



User Memory

Subject of this Chapter

This chapter describes the structure and usage of Twido user memory.

What's in this Chapter?

This chapter contains the following topics:

Topic Page
User Memory Structure 52
Backup and Restore without Backup Cartridge or Extended Memory 55
Backup and Restore with a 32K Backup Cartridge 57
Using the 64K Extended Memory Cartridge 60

35011386 05/2009

51




User Memory

User Memory Structure

Introduction
The controller memory accessible to your application is divided into two distinct sets:

e Bit values
e Word values (16-bit signed values) and double word values (32-bit signed values)

Bit Memory

The bit memory is located in the controller's built-in RAM. It contains the map of 128
bit objects.

Word Memory
The word memory (16 bits) supports:

e Dynamic words: runtime memory (stored in RAM only).

o Memory words (%MW) and double words (%MD): dynamic system data and
system data.

e Program: descriptors and executable code for tasks.

e Configuration data: constant words, initial values, and input/output
configuration.

Memory Storage Types
The following are the different types of memory storage for Twido controllers.

o Random Access Memory.
Internal volatile memory: Contains dynamic words, memory words, program and
configuration data.

¢ EEPROM
An integrated 32 kB EEPROM that provides internal program and data backup.
Protects program from corruption due to battery failure or a power outage lasting
longer than 30 days. Contains program and configuration data. Holds a maximum
of 512 memory words. Program is not backed up here if a 64 kB extended
memory cartridge is being used and Twido has been configured to accept the
64 kB extended memory cartridge. The Twido Extreme TWDLEDCK1 has no
extended memory cartridge.

52 35011386 05/2009



User Memory

e 32 kB backup cartridge
An optional external cartridge used to save a program and transfer that program
to other Twido controllers. Can be used to update the program in controller RAM.
Contains program and constants, but no memory words. The Twido Extreme
TWDLEDCK1 has no backup cartridge.

e 64 kB extended memory cartridge
An optional external cartridge that stores a program up to 64 kB. Must remain
plugged into the controller as long as that program is being used. The
Twido Extreme TWDLEDCK1 has no extended memory cartridge.

Saving Memory
Your controller's program and memory words can be saved in the following:

e RAM (for up to 30 days with good battery)
e EEPROM (maximum of 32 kB)

Transferring the program from the EEPROM memory to the RAM memory is done
automatically when the program is lost in RAM (or if there is no battery). The
Twido Extreme TWDLEDCKT1 has no internal battery.

Manual transfer can also be performed using TwidoSuite.

Twido Compact and Modular Memory Configurations

The following tables describe the types of memory configurations possible with
Twido compact and modular controllers.

Compact Controllers
Memory Type 10DRF 16DRF 24DRF 40DRF 40DRF**
(32 kB) (64 kB)

Internal RAM 10 kB 10 kB 10 kB 10 kB 10 kB
Mem 1*

External RAM 16 kB 32 kB 32 kB 64 kB
Mem 2*

Internal EEPROM 8 kB 16 kB 32 kB 32 kB 32 kB***
External EEPROM 32 kB 32 kB 32 kB 32 kB 64 kB
Maximum program size | 8 kB 16 kB 32 kB 32 kB 64 kB
Maximum external 8 kB 16 kB 32 kB 3 2kB 64 kB
backup

35011386 05/2009 53



User Memory

Twido Extreme Memory Configurations

Modular Controllers

Memory Type 20DUK 20DRT 20DRT
20DTK 40DUK 40DUK
40DTK (32 kB) 40DTK** (64 kB)
Internal RAM 10 kB 10 kB 10 kB
Mem 1*
External RAM 32 kB 32 kB 64 kB
Mem 2*
Internal EEPROM 32 kB 32 kB 32 kB***
External EEPROM 32 kB 32 kB 64 kB
Maximum program size | 32 kB 32 kB 64 kB
Maximum external 32 kB 32 kB 64 kB
backup

(*) Mem 1 and Mem 2 in memory usage.

(**) in this case the 64 kB cartridge must be installed on the Twido and declared in
the configuration, if it has not already been declared,

(***) reserved for backup of the first 512 %MW words or the first 256 %MD double

words.

The following table describes the possible types of memory configuration for the
Twido Extreme controllers.

Twido Extreme controller

Memory Type TWDLEDCK1
External RAM 32 kB
Internal EEPROM 32 kB
Maximum program size 32 kB

54

35011386 05/2009




User Memory

Backup and Restore without Backup Cartridge or Extended Memory

Introduction

At a Glance

Memory Structure

The following information details backup and restore memory functions in modular
and compact controllers without a backup cartridge or extended memory plugged in.

This section does not apply to the Twido Extreme TWDLEDCK1 PLC which also has
no backup cartridge. This is described in Twido Extreme User Memory.

Twido programs, memory words and configuration data can be backed up using the
controllers internal EEPROM. Because saving a program to the internal EEPROM
clears any previously backed up memory words, the program must be backed up
first, then the configured memory words. Dynamic data can be stored in memory
words then backed up to the EEPROM. If there is no program saved to the internal
EEPROM you cannot save memory words to it.

Here is a diagram of a controller's memory structure. The arrows show what can be
backed up to the EEPROM from RAM:

Dynamic words

% MWs “7

RAM
Program ‘I *****
Configuration data ‘I - | .~ 0
‘ \
\
! \
% MWs I E— .
EEPROM : |
Program o} - ‘
Configuration data fe- — — — — — -

35011386 05/2009

55



User Memory

Program Backup

Here are the steps for backing up your program into EEPROM.

Step

Action

1

The following must be true:
There is a valid program in RAM.

From the TwidoSuite window, select See Memory Information from Program
— Debug — Check PLC and click Save.
Note: Check PLC can only be used in connected mode.

Program Restore

During power up there is one way the program will be restored to RAM from the
EEPROM (assuming there is no cartridge or extended memory in place):
e The RAM program is not valid

To restore a program manually from EEPROM do the following:
e From the TwidoSuite window, select Memory Cartridge Commands from
Program — Debug , select a connection and click Restore.

Data (%MWs) Backup

Here are the steps for backing up data (memory words) into the EEPROM:

Step

Action

1

For this to work the following must be true:

A valid program in RAM (%SW96:X6=1).

The same valid program already backed up into the EEPROM.
Memory words configured in the program.

Set %SW97 to the length of the memory words to be saved.
Note: Length cannot exceed the configured memory word length, and it must be
greater than 0 but not greater than 512.

Set %SW96:X0 to 1.

Data (%MWs) Restore

Restore %MWs manually by setting system bit %S95 to 1.

For this to work the following must be true:

e A valid backup application is present in the EEPROM

e The application in RAM matches the backup application in EEPROM
o The backup memory words are valid

56

35011386 05/2009




User Memory

Backup and Restore with a 32K Backup Cartridge

Introduction

At a Glance

The following information details backup and restore memory functions in modular
and compact controllers using a 32K backup cartridge.

This section does not apply to the Twido Extreme TWDLEDCK1 PLC which has no
backup cartridge. This is described in Twido Extreme User Memory.

The backup cartridge is used to save a program and transfer that program to other
Twido controllers. It should be removed from a controller and set aside once the
program has been installed or saved. Only program and configuration data can be
saved to the cartridge (%MWs cannot be saved to the 32K backup cartridge).
Dynamic data can be stored in memory words then backed up to the EEPROM.
When program installation is complete any %MWs that were backed up to the
internal EEPROM prior to installation will be lost.

35011386 05/2009

57



User Memory

Memory Structure

Here is a diagram of a controller's memory structure with the backup cartridge
attached. The arrows show what can be backed up to the EEPROM and cartridge

from RAM:
Dynamic words
%MWs Mi
RAM

Program ‘I ———————
Configuration data ‘I — = | — = 7
' \
\
; \
% MWs g | : \
EEFPROM : |
Program g - - oo |
Configuration data - — — — _ — 4
' \
\
\
\
Z \
Backup Program e ‘

cartridge

Configuration data e — — — — — 2

Program Backup
Here are the steps for backing up your program into the backup cartridge:

Step Action
1 Power down the controller.
2 Plug in the backup cartridge.
3 Powerup the controller.
4 From the TwidoSuite window, select Memory Cartridge Commands from

Program — Debug, select a connection and click Backup.

(é)]

Power down the controller.

Remove backup cartridge from controller.

58 35011386 05/2009



User Memory

Program Restore

To load a program saved on a backup cartridge into a controller do the following:

Step

Action

1

Power down the controller.

Plug in the backup cartridge.

Powerup the controller.
(If Auto Start is configured you must power cycle again to get to run mode.)

Power down the controller.

Remove backup cartridge from controller.

Data (%MWs) Backup

Here are the steps for backing up data (memory words) into the EEPROM:

Step

Action

1

For this to work the following must be true:

A valid program in RAM.

The same valid program already backed up into the EEPROM.
Memory words configured in the program.

Set %SW97 to the length of the memory words to be saved.
Note Length cannot exceed the configured memory word length, and it must be
greater than 0 but not greater than 512.

Set %SW96:X0 to 1.

Data (%MWs) Restore

Restore %MWs manually by setting system bit %S95 to 1.

For this to work the following must be true:

e A valid backup application is present in the EEPROM

e The application in RAM matches the backup application in EEPROM
e The backup memory words are valid

35011386 05/2009

59




User Memory

Using the 64K Extended Memory Cartridge

Introduction

At a Glance

The following information details using the memory functions in modular controllers
using a 64K extended memory cartridge.

The 64K extended memory cartridge is used to extend the program memory
capability of your Twido controller from 32K to 64K. It must remain plugged into the
controller as long as the extended program is being used. If the cartridge is removed
the controller will enter the stopped state. Memory words are still backed up into the
EEPROM in the controller. Dynamic data can be stored in memory words then
backed up to the EEPROM. The 64K extended memory cartridge has the same
power up behavior as the 32K backup cartridge.

60

35011386 05/2009



User Memory

Memory Structure

Here is a diagram of a controller's memory structure using an extended memory
cartridge. The arrows show what is backed up into the EEPROM and the 64K
extended memory cartridge from RAM:

Dynamic words
%MWs —
RAM
Program (1st) ‘I ----------- .

Configuration data ‘I - — == ==
: \
' \
. \
Lot |
EEPROM |
%MWWs |
- - '~
C
L
; \
' |
- |
Extended I |

memory Program (2nd)
. - .

cartridge

Configure Software and Install Extended Memory

Before you begin writing your extended program, you must install the 64K extended
memory cartridge into your controller. The following four steps show you how:

Step Action
1 Under the Hardware option menu on you TwidoSuite window enter
‘TWDXCPMFK64'.

Power down the controller.

Plug in the 64K extended memory cartridge.

Powerup the controller.

35011386 05/2009 61



User Memory

Save your program.

Once your 64K extended memory cartridge has been installed and your program

written:

e From the TwidoSuite window, select Memory Cartridge Commands from
Program — Debug, select a connection and click Backup.

Data (%MWs) Backup
Here are the steps for backing up data (memory words) into the EEPROM:

Step

Action

1

For this to work the following must be true:
A valid program is present
Memory words are configured in the program.

Set %SW97 to the length of the memory words to be saved.

Note: Length cannot exceed the configured memory word length, and it must be

greater than O but not greater than 512.

Set %SW96:X0 to 1.

Data (%MWs) Restore
Restore %MWs manually by setting system bit %S95 to 1.

For this to work the following must be true:
e A valid program is present
e The backup memory words are valid

62

35011386 05/2009




Event task management

Subject of this Chapter
This chapter describes event tasks and how they are executed in the controller

NOTE: Event tasks are not managed by the Twido Brick 10 controller
(TWDLCAA10DREF).

What's in this Chapter?

This chapter contains the following topics:

Topic Page
Overview of Event Tasks 64
Description of Different Event Sources 65
Event Management 67

35011386 05/2009

63




Event task management

Overview of Event Tasks

Introduction

The previous chapter presented periodic and cyclic tasks in which objects are
updated at the start and end of the task. Event sources may cause a certain task to
be stopped while higher priority (event) tasks are executed to allow objects to be
updated more quickly.

An event task:
e s a part of a program executed when a given condition is met (event source),

e has a higher priority than the main program,

e produces a rapid response time enabling the overall response time of the system
to be reduced.

Description of an Event

An event is composed of:

e an event source which can be defined as a software or hardware interrupt
condition to interrupt the main program (see page 65),

e a section which is an independent programmed entity related to an event,

e an event queue which can be used to store a list of events until they are executed,

e a priority level which specifies the order of event execution.

64

35011386 05/2009



Event task management

Description of Different Event Sources

Overview of Different Event Sources

An event source needs to be managed by the software to make sure the main
program is properly interrupted by the event, and to call the programming section
linked to the event. The application scan time has no effect on the execution of the
events.

The following 9 event sources are allowed:

e 4 conditions linked to the VFC function block thresholds (2 events per %VFC
instance),

e 4 conditions linked to the physical inputs of a controller base,

e 1 periodic condition.

An event source can only be attached to a single event, and must be immediately
detected by TwidoSuite. Once it is detected, the software executes the
programming section attached to the event: each event is attached to a subroutine
labeled SRi: defined on configuration of the event sources.

Physical Input Events of a Controller Base

Inputs %I10.2, %10.3, %I10.4 and %I10.5 can be used as event sources, provided they
are not locked and that the events are allowed during configuration.

Event processing can be activated by inputs 2 to 5 of a controller base (position 0),
on a rising or falling edge.

For further details on configuring this event, refer to the section entitled "Hardware
Configuration -> Input Configuration" in the "TwidoSuite Operation Guide" on-line
help.

Output Event of a %VFC Function Block

Outputs THO and TH1 of the %VFC function block are event sources. Outputs THO
and TH1 are respectively set:

e to 1 when the value is greater than threshold SO and threshold S1,
e to 0 when the value is less than threshold SO and threshold S1.

A rising or falling edge of these outputs can activate an event process.

For further details on configuring this event, refer to the section entitled "Software
Configuration -> Very Fast Counters" in the "TwidoSuite Operation Guide" on-line
help.

35011386 05/2009

65



Event task management

Periodic event

This event periodically executes a single programming section. This task has higher
priority than the main task (master).

However, this event source has lower priority than the other event sources.

The period of this task is set on configuration, from 5 to 255 ms. Only one periodic
event can be used.

For further details on configuring this event, refer to the section entitled "Configuring
Program Parameters -> Scan Mode" in the "TwidoSuite Operation Guide" on-line
help.

66

35011386 05/2009



Event task management

Event Management

Events Queue and Priority

Event Queue Management

Events have 2 possible priorities: High and Low. But only one type of event (thus
only one event source) can have High priority. The other events therefore have Low
priority, and their order of execution depends on the order in which they are

detected.

To manage the execution order of the event tasks, there are two event queues:

e in one, up to 16 High priority events can be stored (from the same event source),
e in the other, up to 16 Low priority events can be stored (from other event

sources).

These queues are managed on a FIFO basis: the first event to be stored is the first
to be executed. But they can only hold 16 events, and all additional events are lost.

The Low priority queue is only executed once the High priority queue is empty.

Each time an interrupt appears (linked to an event source), the following sequence

is launched:

Step

Description

1

Interrupt management:

e recognition of the physical interrupt,

e event stored in the suitable event queue,

e verification that no event of the same priority is pending (if so the event
stays pending in the queue).

Save context.

Execution of the programming section (subroutine labeled SRi:) linked to the
event.

Updating of output.

Restore context.

Before the context is re-established, all the events in the queue must be executed.

35011386 05/2009

67



Event task management

Event check

System bits and words are used to check the events (see page 718):

%S31: used to execute or delay an event,

%S38: used to decide whether or not to place events in the events queue,
%S39: used to find out if events are lost,

%SW48: shows how many events have been executed since the last cold start
(counts all events except periodic events.)

The value of bit %S39 and word %SW48 is reset to zero and that of %S31 and %S38
is set to its initial state 1 on a cold restart or after an application is loaded, but
remains unchanged after a warm restart. In all cases, the events queue is reset.

68

35011386 05/2009



Special Functions

Subject of this Part

This part describes communications, built-in analog functions, managing analog I/0
modules, installing the AS-Interface V2 bus and the CANopen fieldbus for Twido

controllers.

What's in this Part?

This part contains the following chapters:

Chapter Chapter Name Page
5 Communications 71
6 Built-In Analog Functions 149
7 Managing Analog Modules 155
8 Twido Extreme Input/Output Configuration 171
9 Installing the AS-Interface V2 bus 225
10 Installing and Configuring the CANopen Fieldbus 261
11 Installing and Configuring the CANJ1939 Fieldbus 318
12 Configuring the TwidoPort Ethernet Gateway 360
13 Operator Display Operation 390

35011386 05/2009

69




Special Functions

70

35011386 05/2009



Communications

Subject of this Chapter

This chapter provides an overview of configuring, programming, and managing

communications available with Twido controllers.

What's in this Chapter?
This chapter contains the following topics:

Topic Page

Presentation of the Different Types of Communication 72
TwidoSuite to Controller Communication 74
Communication between TwidoSuite and a Modem 81
Remote Link Communications 93
ASCIlI Communications 106
Modbus Communications 117
Standard Modbus Requests 134
Modbus Function Codes 23 (MB FC) - Read/Write Multiple registers and N 140
Words

Modbus Function Codes 43/14 (MB FC) - Read Device Identification 143
Transparent Ready Implementation Class (Twido Serial A05, Ethernet A15) 147

35011386 05/2009

71




Communications

Presentation of the Different Types of Communication

At a Glance

Remote Link

ASCII

Modbus

Twido provides one or two serial communications ports used for communications to
remote 1/O controllers, peer controllers, or general devices. Either port, if available,
can be used for any of the services, with the exception of communicating with
TwidoSuite, which can only be performed using the first port. Three different base
protocols are supported on each Twido controller: Remote Link, ASCII, or Modbus
(modbus master or modbus slave).

Moreover, the TWDLC*E40DRF compact controllers provide one RJ45 Ethernet
communications port. They support the Modbus TCP/IP client/server protocol for
peer-to-peer communications between controllers over the Ethernet network.

The TWDLEDCK1 Twido Extreme controller has only one serial port and supports
Modbus, ASCII, Ethernet and BlueTooth communications.

The remote link is a high-speed master/slave bus designed to communicate a small
amount of data between the master controller and up to seven remote (slave)
controllers. Application or I/O data is transferred, depending on the configuration of
the remote controllers. A mixture of remote controller types is possible, where some
can be remote I/O and some can be peers.

Remote link is not supported (neither serial RS485 nor CANJ1939) by the
TWDLEDCK1 Twido Extreme controller.

The ASCII protocol is a simple half-duplex character mode protocol used to transmit
and/or receive a character string to/from a simple device (printer or terminal). This
protocol is supported only via the "EXCH" instruction.

For the TWDLEDCK1 Twido Extreme controller, if ASCII is used then OV must be
applied to the communication strap contact (pin 22) to enable communication.

The Modbus protocol is a master/slave protocol that allows for one, and only one,
master to request responses from slaves, or to act based on the request. The master
can address individual slaves, or can initiate a broadcast message to all slaves.
Slaves return a message (response) to queries that are addressed to them
individually. Responses are not returned to broadcast queries from the master.

72

35011386 05/2009



Communications

Modbus TCP/IP

Modbus master - The modbus master mode allows the Twido controller to send a
modbus query to a slave and await its reply. The modbus master mode is supported
only via the "EXCH" instruction. Both Modbus ASCII and RTU are supported in
modbus master mode.

NOTE: It is possible to send a Modbus request to an IP slave that would not be
declared in the IP Slave List.

Modbus Slave - The modbus slave mode allows the Twido controller to respond to
modbus queries from a modbus master, and is the default communications mode if
no other type of communication is configured. The Twido controller supports the
standard modbus data and control functions and service extensions for object
access. Both Modbus ASCII and RTU are supported in modbus slave mode.
Furthermore, il is possible to change the IP address / IP sub mask and IP gateway
through some %sw without modifying the application.

NOTE: 32 devices (without repeaters) can be installed on an RS485 network (1
master and up to 31 slaves), the addresses of which can be between 1 and 247.

NOTE: Modbus TCP/IP is solely supported by TWDLC*E40DRF series of compact
controllers with built-in Ethernet network interface.

The following information describes the Modbus Application Protocol (MBAP).

The Modbus Application Protocol (MBAP) is a layer-7 protocol providing peer-to-
peer communication between programmable logic controllers (PLCs) and other
nodes on a LAN.

The current Twido controller TWDLCeE40DRF implementation transports Modbus
Application Protocol over TCP/IP on the Ethernet network. Modbus protocol
transactions are typical request-response message pairs. A PLC can be either client
or server depending on whether it is querying or answering messages.

Ethernet Server / Modbus Slave

The Brick 40 is a part of a network and a supervision system access to the Twido for
retrieving some data. This requirement consist in the possibility to change the IP
adress / IP sub mask and IP gateway through some %sw without modifying the
application.

Ethernet Client / Modbus Master

The Brick 40is a supervision system, requiring some data to other Ethernet
equipment (such as OTB or an other Brick 40). Tis requirement consists in the
possibility to send a Modbus request to an IP slave that would not be declared in
words to retrieve the Ethernet current status.

35011386 05/2009

73



Communications

TwidoSuite to Controller Communication

At a Glance

Each Twido controller has a built-in EIA RS485 terminal port, with its own internal
power supply, on Port 1. (The TWDLEDCK1 Twido Extreme controller has only one
serial port). Port 1 must be used to communicate with the TwidoSuite programming
software.

No optional cartridge or communication module can be used for this port. A modem,
however, can be used on this port.

There are several ways to connect the PC to the Twido controller RS485 Port 1:

e By TSX PCX cable,

e By telephone line: Modem connection,

e By Bluetooth for the TWDLEDCK1 Twido Extreme controller using a Bluetooth
adapter (dongle) VW3 A8114.

Moreover, the TWDLC*E40DRF compact controllers have a built-in RJ45 Ethernet
network connection port that can be used to communicate with the Ethernet-capable
PC running the TwidoSuite programming software.

There are two ways for the Ethernet-capable PC to communicate with a
TWDLCE40DRF Twido controller RJ45 port:

e By direct cable connection via a UTP Cat5 RJ45 Ethernet crossover cable (not
recommended),

e By connection to the Ethernet network via a SFTP Cat5 RJ45 Ethernet cable
available from the Schneider Electric catalog (cable reference: 490NTWOQOQQee).

The TWDLEDCK1 Twido Extreme controller can also be connected to the Ethernet
network using a OSITRACK XGS Z33ETH Modbus-Ethernet connection box.

A WARNING

UNINTENDED EQUIPMENT OPERATION

Use TwidoSuite to properly disconnect a TSX PCX1031, TSX CRJMD25, or
Ethernet communication cable before physically removing a cable from one
controller and rapidly reinserting into another, as TwidoSuite may not sense the
disconnection if done rapidly.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

74

35011386 05/2009



Communications

Serial Cable Connection

The EIA RS232C port on your personal computer can be connected to the
controller's Port 1 using the TSX PCX1031 cable. (For the Twido Extreme
TWDLEDCK1 PLC this serial connection is a VW3 A8106 cable.) This cable
converts signals between EIA RS232 and EIA RS485. The TSX PCX1031 cable is
equipped with a 4-position rotary switch to select different modes of operation. The
switch designates the four positions as "0-3", and the appropriate setting for
TwidoSuite to Twido controller is location 2.

This connection is illustrated in the diagram below.

Port 1
R§485 TSX PCX1031
E Serial

o Minidin 2 EIA RS232
Ilﬁ; AEM—— 1 A s —gﬁ PC Serigl Fort
Serial Port T
Serial =7
i [}] PC Serial Port

VW3 A8106

NOTE: For this cable, the DPT signal on pin 5 is not tied to OV. This indicates to the
controller that the current connection is a TwidoSuite connection. The signal is
pulled up internally, informing the firmware executive that this is a TwidoSuite
connection.

For the TWDLEDCK1 Twido Extreme controller, if the ASCII protocol is used then
0V must be applied to the communication strap contact (pin 22) to enable
communication.

35011386 05/2009 75



Communications

USB Cable Connection

The USB port on your personal computer can be connected to the controller's Port
1 using the TSX CUSB485 and TSX CRJMD25 communication cables. (For the
Twido Extreme TWDLEDCK1 PLC this connection is made with TSX CUSB485 and
TWD XCAFJO010 cables.) The TSX CUSB485 cable converts signals between USB
and EIA RS485.

This connection is illustrated in the diagram below.

Port 1

PC USB Port
RS485 ©
[ -i{ﬂ Minidin Male RJ45
n eE—=—=0 | §
| i
t L TSX CRJMD25

Female RJ45
USB
PC USB Port
== °

TSX CUSB485

=— | &

" TWD XCAFJO10

NOTE: For this cable, the DPT signal on pin 5 is not tied to OV. This indicates to the
controller that the current connection is a TwidoSuite connection. The signal is
pulled up internally, informing the firmware executive that this is a TwidoSuite
connection.

For the TWDLEDCK1 Twido Extreme controller, if the ASCII protocol is used then
0V must be applied to the communication strap contact (pin 22) to enable
communication.

76

35011386 05/2009



Communications

Pin outs of Male and Female Connectors

The following figure shows the pin outs of a male 8-pin miniDIN connector and of a

terminal:

Mini DIN

TWD NAC232D, TWD NAC485D
TWD NOZ485D, TWD NOZ232D

Terminal block

TWD NAC485T
TWD NOZ485T

LY

Pin outs Base RS485[RS485 option |[RS232-C Pin outs RS485
1 D1 (A+) D1 (A+) RTS A D1 (A+)
2 D0 (B-) DO (B-) DTR B DO (B-)
3 NC NC TXD SG ov
4 /DE NC RXD
5 /DPT NC DSR
6 NC NC GND
7 oV (1A GND
8 5V 5V 5V

Note: Maximum total consumption for 5V mode (pin 8): 180mA

Note: There is no relation between the Twido RS485 A and B terminals and the
D(A) and D(B) terminals on other equipment such as ATV drives, XBT, Premium,

etc.

The following figure shows the pin outs of a SubD female 9-pin connector for the

TSX PCX1031.

o] e
‘i'rl;
”’ 9
5 .
B E

Pin outs

O[Ca|~] [ [0 |G {RY | =

35011386 05/2009

77



Communications

Telephone Line Connection
A modem (see page 81) connection enables programming of and communication
with the controller using a telephone line.

The modem associated with the controller is a receiving modem connected to port
1 of the controller. The modem associated with the PC can be internal, or external
and connected to a COM serial port.

This connection is illustrated in the diagram below.

PC Serial Port

Port 1
RS485 EIA R5232

ol
[.l External

. ’ Modem
| modem
;;, Telephone line
connector

TSX PCX1031 position 2,
with Tx/Rx inversion

NOTE: Only one modem can be connected to port 1 of the controller.

NOTE: Remember to install the software provided with the modem, as TwidoSuite
only takes into account the installed modems.

Ethernet Network Connection

NOTE: Although direct cable connection (using a Ethernet crossover cable) is
supported between the Twido TWDLC*E40DRF and the PC running the TwidoSuite
programming software, it is not recommended. Therefore, for Ethernet connection
we recommend that you always use an Ethernet network hub/switch.

The following figure shows a PC-to-Twido connection via a network Ethernet

hub/switch:
TwidoTWDLC*E40DRF Ethemet
RJ45 Ethemet Port Hub/Swilch PC Ethemet Network Port
] RJ45
PR m

RJ45 male
connector

—'-IE
\ﬂ

SFTP Cat5 RJ45 Ethernet cable RJ45 male

connector

(2]

78 35011386 05/2009



Communications

NOTE: The PC running the TwidoSuite application must be Ethernet-capable.

The Twido TWDLC*E40DRF bases feature a RJ45 connector to connect to the 100
BASE-TX network Ethernet with auto negotiation. It can accomodate both 100Mbps
and 10 Mbps network speeds.

NOTE: ltis also possible to use an ConneXium TwidoPort Ethernet interface module
499TWDO01100 for Ethernet connection. Configuring the TwidoPort
(see page 362)explains how to declare and configure this module in TwidoSuite.

An Ethernet connection example for the Twido Extreme TWDLEDCK1 is provided
below.

The following figure shows the RJ45 connector of the Twido controller:

3

The eight pins of the RJ45 connector are arranged vertically and numbered in order
from bottom to top. The pinout for the RJ45 connector is described in the table

below:
Pinout Function | Polarity
8 NC
7 NC
6 RxD (-)
5 NC
4 NC
3 RxD (+)
2 TxD (-)
1 TxD (+)
NOTE:

e The same connector and pinout is used for both 10Base-T and 100Base-TX.
e When connecting the Twido controller to a 100Base-TX network, you should use
at least a category 5 Ethernet cable.

35011386 05/2009 79



Communications

Example Ethernet Connection for Twido Extreme

The following diagram shows an example of the connection between the PC running
the TwidoSuite application program and a Twido Extreme TWDLEDCK1 controller
via an XGS Z33ETH connection box . Itis possible to connect up to 3 Twido Extreme
bases on an Ethernet network using this connection box. This type of connection is
only possible with the Twido Extreme TWDLEDCK1 controller.

PC Twido Extreme
RJ45 Ethernet RJ45 Ethernet

XGS Z33ETH
connection box

RJ45 male
B[ T

Ethemet hub/switch

NOTE: Itis also possible to use an ConneXium TwidoPort Ethernet interface module
499TWDO01100 with a TWD XCAFJO010 cable to connect the Twido Extreme.
Configuring the TwidoPort (see page 362)explains how to declare and configure
this module in TwidoSuite.

80

35011386 05/2009



Communications

Communication between TwidoSuite and a Modem

General

A PC executing TwidoSuite can be connected to a Twido controller for transferring
applications, animating objects and executing operator mode commands. It is also
possible to connect a Twido controller to other devices, such as another Twido
controller, for establishing communication with the application process.

Installing the Modem

All modems the user wishes to use with TwidoSuite must be installed running
Windows from your PC.

To install your modems running Windows, follow the Windows documentation.
This installation is independent from TwidoSuite.

35011386 05/2009 81



Communications

Bluetooth Connection

Bluetooth connection is also possible for Twido controllers, via a Bluetooth adapter
(dongle) VW3 A8114. PCs not fitted with integrated Bluetooth can be used with the
Bluetooth PC adapter VW3 A8115.

Eluetooth USE Bluetooth Modbus
Adapter Adapter
TwidoSuite VW3 AS115 VWE A3114

NOTE: To facilitate Twido Extreme application download and debugging, Bluetooth
connection is recommended.

For the Twido Extreme this Bluetooth adapter can be connected to the PLC’s serial
port with a TWD XCAFJ010 cable

TWD XCAFJ010

Establishing Connection

The default communication connection between TwidoSuite and the Twido
controller is made by a serial communication port, using the TSX PCX1031 cable
and a crossed adapter (see Appendix 1, page 90). For the Twido Extreme
TWDLEDCK1 the VW3 A8106 cable is required for serial connection.

If a modem is used to connect the PC, this must be indicated in the TwidoSuite
software.

82 35011386 05/2009



Communications

To select a connection using TwidoSuite, click él)Preferences.
Result:

The following dialog box appears:

Preferences Apply ] _Restore ]
Default project directory Directory: |C \Program File\Schneider Electric\TwidoSuiteMy project ‘ J
Default projects € _Mone

" _Sohneider default

® _Customized C\Program File\Schneider Electric\TwidoSuitey project | kx|
Default program editor © Ladder

 List
Autosave project & Vas avery 15 ¥ | minutes

€ No
Default background color )'

Clear Dark
Default project image € Default image

& Personalized image CADocuments and Settings\Administratorihvly documentst ‘ J
Default functional levels of applications & futomatic A

C The wery highest
® The very lowest
¢ Manual Manual

E

MName Connection _type [P £ Phone  Punit f Address Baud rate  Parity Stop bits Timeout Break tirmeout

Connection management

CON Serial CON Purnit 5000 0

comz Serial com Punit 5000 20

My connection 1 Serial 1921681 1 Direct 5000 20

Modem connection  Ethernst HOOGOO0R 15200 Hane 1 5000 20
Add Medil

This screen allows you to create, modify or delete a connection.

To use an existing connection, select it from the connection table in Program —
Debug — Connect task.

If you have to add, modify or delete a connection, use the "Connection
Management" table that displays the list of connections and their properties.

In this case, 2 serial ports are displayed (Com1 and Com2), as well as a modem
connection showing a TOSHIBA V.90 model configured to compose the number:
XXXXXXXXXX (modem number).

NOTE: Compose the number in adjacent number format.

You can change the name of each connection for application maintenance purposes
(COM1 or COM2 cannot be changed).

This is how you define and select the connection you wish to use for connecting your
PC to a modem.

35011386 05/2009 83



Communications

However, this is just part of the process for making an overall connection between
the computer and the Twido controller.

The next step involves the Twido controller. The remote Twido must be connected
to a modem.

All modems need to be initialized to establish a connection. The Twido controller
containing at least version V2.0 firmware is capable, on power-up, of sending an
adapted string to the modem, if the modem is configured in the application.

Configuring the Modem

The procedure for configuring a modem in a Twido controller is as follows.
To add a modem to an open application, follow the procedure described in
Once the modem is configured on port 1, the properties must be defined. In the

Describe step, double-click the Modem thumbnail “ege .

Result: The Modem Feature dialog box appears. The Modem properties dialog box
lets you either select a known modem, create a new modem, or modify a modem
configuration.

lllustration of the Modem Feature dialog box:

Configuration

Modem
Types My Modem v
RIER28 FEEEN CERRE: ATEOGT&B1&DO&HO&IOK
R1&S0S0O
New | Reset Default I Apply |

The selected configuration corresponds to the one read in the controller: the Hayes
initialization command, then read, is displayed in Hayes standard format.

NOTE: The modem is completely managed by the Twido controller through port 1.
This means you can connect a modem to communication port 2, but in this case all
of the modem’s operating modes and its initialization sequence must be performed
manually, and cannot be performed in the same way as with communication port 1.
(The Twido Extreme TWDLEDCK1 controller has only one serial port.)

84

35011386 05/2009



Communications

You can select a previously-defined modem, or create a new one by clicking "New".
lllustration of the Add/Modify Modem dialog box:

Configuration |X‘

AddModify Modem

Types: My Modem v

Hayes reset command

ATEQ1T XXXXXXXXX

| Reset Default | Apply |

Then give the new profile a name and complete the Hayes initialization commands
as described in the modem documentation.

In the figure above, "xxxxxx" represents the initialization sequence you must enter
to prepare the modem for suitable communication, i.e. the baud rate, parity, stop bit,
and receive mode.

To complete the sequence, please refer to your modem documentation.
The maximum string length is: 127 characters.

When your application is complete, or at least when communication port 1 is fully
described, transfer the application using a "point to point connection".

The Twido controller is now ready to be connected to a PC executing TwidoSuite via
modems.

35011386 05/2009

85



Communications

Connection Sequence

Once TwidoSuite and the Twido controller are ready, establish connection as
follows:

Step Action

1 Power-up the Twido controller and modem.
2 Start your computer and run TwidoSuite.
3

[ i .
Select @)Preferences, and select a modem connection from the "Connection
Management" table, (for example, "My modem" or the name you have given to
your modem connection — see "creation of a connection”).

4 Connect TwidoSuite

NOTE: If you want to use your modem connection all the time, click "file",
"preferences", and select "my modem" (or the name you have given it). TwidoSuite
will now memorize this preference.

Operating Modes

The Twido controller sends the initialization string to the connected, powered-up
modem. When a modem is configured in the Twido application, the controller first
sends an "AT&F" command to establish whether the modem is connected. If the
controller receives an answer, the initialization string is sent to the modem.

Internal, External and International Calls

If you are communicating with a Twido controller within your company premises, you
can use just the line extension needed to dial, such as: 8445

[
Hame Connection type 1P/ Phone Punit fAddress  Baud Rale Parity Slopbile Tmeout  Break Timeout
uss Saral use Punit 5000 20
scifsclfsctf Ethernat 19248811 244 00 20
Wiy connection 1 Ethernat 192.183.1.1 Diract 5000 20
Wlodem connection  MODEM: TOSHEA | 8445 19200 None A 000 20

Add ‘ odify | Delete |

86 35011386 05/2009



Communications

If you are using an internal switchboard to dial telephone numbers outside your
company and you have to first press "0" or "9" before the number, use this syntax:
0, XXXXXXXXXX OF 9, XXXXXXXXXX

G
Name Connection type 1P/ Phone Punit/Address  Baud Rate Parity Stopbits Timeout  Break Tmeout
use Seral use Punit 5000 20
solfscifscf Ethernat 19218841 244 000 20
Ny connection 1 Ethernet 2168 Direct 5000 =)
iecker connection  MODER: TOSHIBA 18200 Mone 1 8000 jual

For international calls, the syntax is: +1xxxxxxxxxx, for example. And if you are using
a switchboard: 0,+ 1TXXXXXXXXXX

-
Neme Connection fype  IP/Phone  Punit [Address Baud Rate Parity Stopbits Tmeout  Break Timeout
use Beril use Punit o0 20
sclisctsch Ethernet 121681l zad w20
My connection 1 Ethernat D) Direct 000 20
Mockm connection MODEM: TOSHER. 19200 None 1 R
add | moawy | ekte |

35011386 05/2009

87



Communications

Frequently Asked Questions

When your communication has been established for a few minutes, you can
experience some communication interruptions. In this case, you must adjust the
communication parameters.

TwidoSuite uses a modbus driver to communicate via serial ports or internal
modems. When communication starts, the modbus driver is visible in the toolbar.
Double-click on the modbus driver icon to open the window. You now have access
to the modbus driver parameters, and the "runtime" tab gives you information on the
frames exchanged with the remote controller.

If the "Number of timeouts" increases or is other than 0, change the value using
"Connection management" table, accessible using TwidoSuite by clicking

@Preferences. Click on the "timeout" field, then click the modification button and
enter a new, higher value. The default value is "5000", in milliseconds.

Try again with a new connection. Adjust the value until your connection stabilizes.

MODBUS Driver - MODBUS01

Configuration  Runtime ] Debug} About W

Communication

[ NedeRIU
Conneclions ’71
Frames Sent ’717
Bytes Sent ’7158
Frames Received ’717
Bytes Received ’7404
Mumber of Timeouts ’70
Checksum Errors ’70

Reset

Hide

88

35011386 05/2009



Communications

Examples

e Example 1: TwidoSuite connected to a TWD LMDA 20DRT (Windows 98 SE).

e PC: Toshiba Portege 3490CT running Windows 98,

e Modem (internal on PC): Toshiba internal V.90 modem,

e Twido Controller: TWD LMDA 20DRT version 2.0,

o Modem (connected to Twido): Type Westermo TD-33 / V.90, reference SR1
MODO1, available from the new Twido catalog (September 03) (see Appendix
2, page 91),

(North American customers only: The modem type that is available in your
area is TD-33/V.90 US),

e Cable: TSX PCX1031, connected to Twido communication port 1, and an
adaptor: 9 pin male /9 pin male, in order to cross Rx and Tx during connection
between the Westermo modem and the Twido controller (see Appendix 1,
page 90). You can also use the TSX PCX1130 cable (RS485/232 conversion
and Rx/Tx crossing).

Toshiba Portege
3490CT Cable:
Modem integrated TSX PCX1031

'

Crossed
adaptor

4 == Westermo TD-33
E .| SR1MODO1

The first test involves using 2 analog telephone lines internal to the company, and
not using the entire number — just the extension (hence only 4 digits for the internal
Toshiba V.90 modem telephone number).

For this test, the connection parameters (TwidoSuite "preferences" then
"Connection management") were established with their default value, with a timeout
of 5000 and break timeout of 20.

35011386 05/2009 89



Communications

o Example 2: TwidoSuite connected to TWD LMDA 20DRT (windows XP Pro)

PC: Compaq Pentium 4, 2.4GHz,

Modem: Lucent Win modem, PCI bus,

Twido Controller: TWD LMDA 20DRT version 2.0,

Modem (connected to Twido): Type WESTERMO TD-33 / V.90, reference
SR1 MODO01, available from the new Twido catalog (September 03) (see
Appendix 2, page 91),

(North American customers only: The modem type that is available in your
area is TD-33/V.90 US),

Cable: TSX PCX1031, connected to Twido communication port 1, and an
adaptor: 9 pin male /9 pin male, in order to cross Rx and Tx during connection
between the Westermo modem and the Twido controller (see Appendix 1,
page 90). You can also use the TSX PCX1130 cable (RS485/232 conversion
and Rx/Tx crossing).

Compaq 2.4 GHz
temdl  Lucent with modem Cable:

TSX PCX1031

T

Crossed
adaptor

The first test involves using two analog telephone lines internal to the company, and
not using the entire number — just the extension (hence only 4 digits for the internal
Toshiba V.90 modem telephone number).

For this test, the connection parameters (TwidoSuite "preferences" then
"Connection management") were established with their default value, with a timeout
of 5000 and break timeout of 20.

Appendix 1

Crossed adaptor for cable TSX PCX1031 and Westermo TD-33 modem:

Ogm c)QQ“
o o
G—4|

- o) o oY

90

35011386 05/2009



Communications

Appendix 2

Modem Westermo TD-33, Schneider reference number SR1 MODO01 (). This
modem manages four DIP switches, which must all be set to OFF:

Factory Settings
ON

Use stored configuration {speed & format etc.)
! E g , Disable DTR Hotcall, Auto Baud

NOTE:

1. Certain products may not be compatible and/or available in all areas. Please
contact your local Schneider representative for availability.

Appendix 3

Wavecom WMOD2B modem, Schneider reference number SR1 MOD02 (V) double
band (900/1800Hz):

NOTE:

1. Certain products may not be compatible and/or available in all areas. Please
contact your local Schneider representative for availability.

35011386 05/2009 91



Communications

Appendix 4

Reference numbers of the products used in this document:

Twido product: TWD LMDA 20DRT,
TwidoSuite software: TWD SPU 1002 V10M,
TSX PCX1031 cable,

TSX PCX1130 cable,

RTU modem: Westermo TD-33 / V90 SR1 MODO01 (),
GSM modem: Wavecom WMOD2B SR1 MOD02 (V).
NOTE:

1. Certain products may not be compatible and/or available in all areas. Please
contact your local Schneider representative for availability.

92

35011386 05/2009



Communications

Remote Link Communications

Introduction

The remote link is a high-speed master/slave bus designed to communicate a small
amount of data between the master controller and up to seven remote (slave)
controllers. Application or I/O data is transferred, depending on the configuration of
the remote controllers. A mixture of remote controller types is possible, where some
can be remote 1/0 and some can be peers.

NOTE: Remote Link communications are not supported by the TWDLEDCK1
Twido Extreme controller.

NOTE: The master controller contains information regarding the address of a
remote I/O. It does not know which specific controller is at the address. Therefore,
the master cannot validate that all the remote inputs and outputs used in the user
application actually exist. Take care that these remote inputs or outputs actually
exist.

NOTE: The remote I/O bus and the protocol used is proprietary and no third party
devices are allowed on the network.

A WARNING

UNINTENDED EQUIPMENT OPERATION

e Be sure that there is only one master controller on a remote link .
e Be sure that all slaves have unique addresses. No two slaves should have the
same address.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

NOTE: The remote link requires an EIA RS485 connection and can only run on one
communications port at a time.

35011386 05/2009 93



Communications

Hardware Configuration

A remote link must use a minimum 3-wire EIA RS485 port. It can be configured to
use either the first or an optional second port if present.

NOTE: Only one communication port at time can be configured as a remote link.

The table below lists the devices that can be used:

Remote

Port

Specifications

TWDLC*A10/16/24DRF,
TWDLCe40DRF,
TWDLMDA20/40DUK,
TWDLMDA20/40DTK,
TWDLMDA20DRT

1

Base controller equipped with a 3-wire EIA RS485 port with
a miniDIN connector.

TWDNOZ485D

Communication module equipped with a 3-wire EIA RS485
port with a miniDIN connector.

Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have an Operator Display expansion module.

TWDNOZ485T

Communication module equipped with a 3-wire EIA RS485
port with a terminal.

Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have an Operator Display expansion module.

TWDNAC485D

Communication adapter equipped with a 3-wire EIA RS485
port with a miniDIN connector.

Note: This adapter is only available for the Compact 16, 24
and 40 I/O controllers and the Operator Display expansion
module.

TWDNAC485T

Communication adapter equipped with a 3-wire EIA RS485
port with a terminal.

Note: This adapter is only available for the Compact 16, 24
and 40 1/O controllers and the Operator Display expansion
module.

TWDXCPODM

Operator Display expansion module equipped with a 3-wire
EIA RS485 port with a miniDIN connector or a 3-wire

EIA RS485 port with a terminal.

Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have a Communication expansion module.

NOTE: You can only check the presence and configuration (RS232 or RS485) of
port 2 at power-up or reset by the firmware executive program.

94

35011386 05/2009




Communications

Cable Connection to Each Device

NOTE: The DPT signal on pin 5 must be tied to OV on pin 7 in order to signify the
use of remote link communications. When this signal is not tied to ground, the Twido
controller as either the master or slave will default to a mode of attempting to
establish communications with TwidoSuite.

NOTE: The DPT to OV connection is only necessary if you are connected to a base
controller on Port 1.

The cable connections made to each remote device are shown below.

Mini-DIN connection

Twido Remote Remote
controller peripheral peripheral
D1(A+)[Do(B-)] ov [DPT D1(A+)[DoB) | ov [DPT]  |[D1(a+) [DoB-)] ov [DPT
[ 2 15 I [ 1 \ [ 1]

Terminal block connection

Master Remote Remote

controller controller controller
A(+)[BE oV AM[BE 0V A)BE)] 0V
A !B !SG | | ! | |

Software Configuration

There must be only one master controller defined on the remote link. In addition,
each remote controller must maintain a unique slave address. Multiple masters or
slaves using identical addresses can either corrupt transmissions or create
ambiguity.

A CAUTION

UNEXPECTED EQUIPMENT OPERATION

Be sure that there is only one master controller on a remote link and that each
slave has a unique address. Failure to observe this precaution may lead to
corrupted data or unexpected and ambiguous results.

Failure to follow these instructions can result in injury or equipment damage.

35011386 05/2009

95




Communications

Master Controller Configuration

The master controller is configured using TwidoSuite to manage a remote link
network of up to seven remote controllers. These seven remote controllers can be
configured either as remote I/Os or as peer controllers. The address of the master
configured using TwidoSuite corresponds to address O.

To configure a controller as a Master Controller, use TwidoSuite to configure port 1
or port 2 as remote links and select the address 0 (Master).

Then, from the "Add remote controller" window, you can specify the slave controllers
either as remote /O, or as peer controllers, as well as their addresses.

Remote Controller Configuration

A remote controller is configured using TwidoSuite, by setting port 1 or 2 as a remote
link or by assigning the port an address from 1 to 7.

The table below summarizes the differences and constraints of each of these types
of remote controller configurations:

Type

Application Program

Data Access

Remote I/O

No

Not even a simple "END"
statement

RUN mode is coupled to the
Master's.

%l and %Q

Only the local 1/0 of the
controller is accessible (and
not its I/O extension).

Peer controller

Yes

Run mode is independent of
the Master's.

%INW and %QNW

A maximum of 4 input words
and 4 output words can be
transmitted to and from each
peer.

Remote Controller Scan Synchronization

The update cycle of the remote link is not synchronized with the master controller's
scan. The communications with the remote controllers is interrupt driven and
happens as a background task in parallel with the running of the master controller's
scan. At the end of the scan cycle, the most up to date values are read into the
application data to be used for the next program execution. This processing is the
same for remote I/O and peer controllers.

Any controller can check for general link activity using system bit %S111. But to
achieve synchronization, a master or peer will have to use system bit %S110. This
bit is set to 1 when a complete update cycle has taken place. The application
program is responsible for resetting this to 0.

96

35011386 05/2009



Communications

The master can enable or disable the remote link using system bit %S112.
Controllers can check on the proper configuration and correct operation of the
remote link using %S113. The DPT signal on Port 1 (used to determine if TwidoSuite
is connected) is sensed and reported on %S100.

All these are summarized in the following table:

System Bit

Status

Indication

%S100

0

master/slave: DPT not active (TwidoSuite cable NOT connected)

master/slave: DPT active (TwidoSuite cable connected)

%S110

master/slave: set to 0 by the application

1
0
1

master: all remote link exchanges completed (remote 1/O only)
slave: exchange with master completed

%S111

master: single remote link exchange completed
slave: single remote link exchange detected

master: single remote link exchange in progress
slave: single remote link exchange detected

%8112

master: remote link communication enabled

master: remote link communication disabled

%S113

master/slave: remote link configuration/operation OK

- Oo| =0

master: remote link configuration/operation error
slave: remote link operation error

Master Controller Restart

If a master controller restarts, one of the following events happens:

e A cold start (%S0 = 1) forces a re-initialization of the communications.
e A warm start (%S1 = 1) forces a re-initialization of the communications.
e In Stop mode, the master continues communicating with the slaves.

Slave Controller Restart

If a slave controller restarts, one of the following events happens:

e A cold start (%S0 = 1) forces a re-initialization of the communications.

e A warm start (%S1 = 1) forces a re-initialization of the communications.

e In Stop mode, the slave continues communicating with the master. If the master
indicates a Stop state:
e The remote I/Os apply a Stop state.
e A peer controller continues in its current state.

35011386 05/2009

97




Communications

Master Controller Stop

When the master controller enters Stop mode, all slave devices continue
communicating with the master. When the master indicates a Stop is requested,
then a remote 1/O controller will Stop, but peer controllers will continue in their
current Run or Stop state.

Remote I/O Data Access

The remote controller configured to be a remote 1/0O does not have or execute its
own application program. The remote controller's base discrete inputs and outputs
are a simple extension of the master controller's. The application must only use the
full three digit addressing mechanism provided.

NOTE: The module number is always zero for remote 1/0.

Illustration
Remote Controller Address
Modular Number
l¢ Channel Number
%Q2.0.2
%I7.0.4

98

35011386 05/2009



Communications

To communicate with remote I/O, the master controller uses the standard input and
output notation of %l and %Q. To access the third output bit of the remote I/O
configured at address 2, instruction %Q2.0.2 is used. Similarly, to read the fifth input
bit of the remote I/O configured at location 7, instruction %I17.0.4 is used.

NOTE: The master is restricted to accessing only the discrete I/O that is part of the
remote’s local I/O. No analog or expansion I/O can be transferred, unless you use
peer communications.

Illustration
Remote link
i" ﬁ..

Master controller Remote le} Remote 11O
Address 0 Address 2 Address 4
%I2.0.0 %I0.0.0

ces ———————— R
%I12.0.23 %10.0.23
%Q2.0.0 %Q0.0.0
%Q2.0.15 %Q0.0.15
%IA‘T.IOI.O — %IC-).IOI.O
%I14.0.23 %I10.0.23
%Q4.0.0 %Q0.0.0
%Q4.0.15 %Q0.0.15

35011386 05/2009 99



Communications

Peer Controller Data Access

To communicate with peer controllers, the master uses network words %INW and
%QNW to exchange data. Each peer on the network is accessed by its remote
address "j" using words %INWj.k and %QNWj.k. Each peer controller on the network
uses %INWO0.0 to %INWO0.3 and %QNWO0.0 to %QNWO0.3 to access data on the
master. Network words are updated automatically when the controllers are in Run
or Stop mode.

The example below illustrates the exchange of a master with two configured peer
controllers.

Remote link

[IIE o

N
e
IIJ@' :IIE'

Master controller Peer controller Peer controller
Address 0 Address 1 Address 3
Y%INW1.0 %QNWO.0
YolNW1.3 WQNWO.3
Y%QNW1.0 %INWO0.0
%QNW1.3 %IVWNO.3

Y%QNWO0.0
%INW3.0 Sans
. [ %ANWO.3
%INW3.3
%QNW3.0 - %INWO0.0
- .
%ANW3.3 %INWO0.3

There is no peer-to-peer messaging within the remote link. The master application
program can be used to manage the network words, in order to transfer information
between the remote controllers, in effect using the master as a bridge.

100 35011386 05/2009



Communications

Status Information

In addition to the system bits explained earlier, the master maintains the presence
and configuration status of remote controllers. This action is performed in system
words %SW111 and %SW113. Either the remote or the master can acquire the
value of the last detected error that occurred while communicating on the remote link
in system word %SW112.

System Use
Words
%SW111 | Remote link status: two bits for each remote controller (master only)
x0-6 0-Remote controller 1-7 not present
1-Remote controller 1-7 present
x8-14 | 0-Remote I/O detected at Remote controller 1-7
1-Peer controller detected at Remote controller 1-7
%SW112 | Remote Link configuration/operation error code
00: successful operations
01 - timeout detected (slave)
02 - checksum error detected (slave)
03 - configuration mismatch (slave)
04 - (for port 1 only) Port unavailable, punit connected or punit mode
%SW113 | Remote link configuration: two bits for each remote controller (master only)
x0-6 0-Remote controller 1-7 not configured
1-Remote controller 1-7 configured
x8-14 | 0-Remote I/O configured as remote controller 1-7

1-Peer controller configured as remote controller 1-7

Remote Link Example
To configure a Remote Link, you must:

asON =

. Configure the hardware.

. Wire the controllers.

. Connect the communications cable between the PC to the controllers.
. Configure the software.

. Write an application.

The diagrams below illustrate the use of the remote link with remote I/O and a peer

controller.

35011386 05/2009

101




Communications

Step 1: Configure the Hardware:

- __|loo
al af T
IE_P‘ I!}OA 10.1
[ Cieak
(L1 W;‘ L1 “’.
Q0.1
Master controller Remote /O Peer controller

The hardware configuration is three base controllers of any type. Port 1 is used for
two communication modes. One mode is to configure and transfer the application
program with TwidoSuite. The second mode is for the Remote Link network. If
available, an optional Port 2 on any of the controllers can be used, but a controller
only supports a single Remote Link.

NOTE: In this example, the two first inputs on the Remote I/O are hard wired to the
first two outputs.

Step 2: Wire the controllers

Mini-DIN connection

Master Remote controller Peer controller
controller Address 1 A Address 2
AH)BRIGND][DPT] |A(+) B GND]DPT] [A(+)[B()|GND] DPT
| I E I I I \ I |

1 ‘2
I ]

Terminal block connection

Master Remote controller Peer controller
controller Address 1 - Address 2
AB[BE 0V AH[BE) 0V A(H)[B() oV
| !B I | ! | |

[5G
| | 1
1 1

Connect the A(+) and B(-) signal wires together. And at each controller, the DPT
signal is tied to ground. Although tying the signal to the ground is not required for
use with a remote link on Port 2 (optional cartridge or communication module), it is
good practice.

102 35011386 05/2009



Communications

Step 3: Connect the Communications Cable between the PC and Controllers:

PC Serial Port
) TSX PCX 1031 EIA RS232
g 3 [E B g | *T
i 1 3]
[ A

Master pemote 110 PEEr

controller controller
Minidin Male RJ45
eEl—=s—=1{_| |
TSX CRIMD25  Fgmale RJ45
emale UeE
——I

TSX CUSB485

The TSX PCX1031 or TSX CUSB485 and TSX CRJMD25 multi-function
programming cables areused to communicate with each of the three base
controllers. Be sure that the cable is on switch position 2. In order to program each
of the controllers, a point-to-point communication with each controller will need to be
to established. To establish this communication: connect to Port 1 of the first
controller, transfer the configuration and application data, and set the controller to
the run state. Repeat this procedure for each controller.

NOTE: The cable needs to be moved after each controller configuration and
application transfer.

Step 4: Configure the Software:

Each of the three controllers uses TwidoSuite to create a configuration, and if
appropriate, the application program.

For the master controller, edit the controller communication setup to set the protocol
to "Remote Link" and the Address to "0 (Master)".

Controller comm. settings
Type: Remote link
Address: 0 (Master)

35011386 05/2009 103



Communications

Configure the remote controller on the master by adding a "Remote I/O" at address
"1" and a "Peer PLC" at address "2".

Add Remote Controllers

Controller Usage: Remote 1/O
Remote Address: 1

Controller Usage: Peer controller
Remote Address: 2

For the controller configured as a remote I/O, verify that the controller
communication setup is set to "Remote Link" and the address is set to "1".

Controller comm. settings
Type. Remote link
Address: 1

For the controller configured as peer, verify that the controller communication setup
is set to "Remote Link" and the address is set to "2".

Controller comm. settings
Type: Remote link
Address: 2

Step 5: Write the applications:
For the Master controller, write the following application program:

LD1

(%MD = %MW +1]
[%CNW2.0 = %MW0]
(%M = %INW2.0]

LD %I0.0

8T %Q1.000
LD %I1.0.0
ST %Q0.0

LD %I0.1

ST %Q1.01
LD %I1.0.1

ST %Q0.1

For the controller configured as a remote 1/O, do not write any application program.

104 35011386 05/2009



Communications

For the controller configured as peer, write the following application:

LD 1
[2QNWO.0 := %INWO0.0]

In this example, the master application increments an internal memory word and
communicates this to the peer controller using a single network word. The peer
controller takes the word received from the master and echoes it back. In the master,
a different memory word receives and stores this transmission.

For communication with the remote I/O controller, the master sends its local inputs
to the remote 1/O's outputs. With the external I/0 hard wiring of the remote I/O, the
signals are returned and retrieved by the master.

35011386 05/2009 105



Communications

ASCIl Communications

Introduction

ASCII protocol provides Twido controllers a simple half-duplex character mode
protocol to transmit and/or receive data with a simple device. This protocol is
supported using the EXCHXx instruction and controlled using the %MSGx function
block.

Three types of communications are possible with the ASCII Protocol:

e Transmission Only
e Transmission/Reception
e Reception Only

The maximum size of frames transmitted and/or received using the EXCHx
instruction is 256 bytes.

Hardware Configuration

An ASCII link (see system bits %S103 and %S104 (see page 719)) can be
established on either the EIA RS232 or EIA RS485 port and can run on as many as
two communications ports at a time.

The table below lists the devices that can be used:

Device Port | Specifications

TWDLCeA10/16/24DRF, |1 Base controller equipped with a 3-wire EIA RS485 port
TWDLCe*40DRF, with a miniDIN connector.

TWDLMDA20/40DTK,

TWDLMDA20DRT

TWDLEDCK1 1 Base controller equipped with non-isolated EIA RS485

type, maximum length limited to 200 m.

Note: The following configuration options are not
possible

® 7 bit, no parity, 1 stop bit

® 8 bit, even parity, 2 stop bits

® 8 bit, odd parity, 2 stop bits

TWDNOZ232D 2 Communication module equipped with a 3-wire EIA
RS232 port with a miniDIN connector.

Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have an Operator Display expansion module.

TWDNOZ485D 2 Communication module equipped with a 3-wire EIA
RS485 port with a miniDIN connector.

Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have an Operator Display expansion module.

106

35011386 05/2009




Communications

Nominal Cabling

Device Port | Specifications

TWDNOZ485T 2 Communication module equipped with a 3-wire EIA
RS485 port with a terminal.

Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have an Operator Display expansion module.

TWDNAC232D 2 Communication adapter equipped with a 3-wire EIA
RS232 port with a miniDIN connector.

Note: This adapter is only available for the Compact 16,
24 and 40 I/O controllers and the Operator Display
expansion module.

TWDNAC485D 2 Communication adapter equipped with a 3-wire EIA
RS485 port with a miniDIN connector.

Note: This adapter is only available for the Compact 16,
24 and 40 I/O controllers and the Operator Display
expansion module.

TWDNAC485T 2 Communication adapter equipped with a 3-wire EIA
RS485 port with a terminal.

Note: This adapter is only available for the Compact 16,
24 and 40 I/O controllers and the Operator Display
expansion module.

TWDXCPODM 2 Operator Display expansion module equipped with a 3-
wire EIA RS232 port with a miniDIN connector, a 3-wire
EIA RS485 port with a miniDIN connector and a 3-wire
EIA RS485 port with a terminal.

Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have a Communication expansion module.

NOTE: You can only check the presence and configuration (RS232 or RS485) of
port 2 at power-up or reset by the firmware executive program. (The Twido Extreme
TWDLEDCKT1 controller has only one serial port.)

Nominal cable connections are illustrated below for both the EIA RS232 and the EIA
RS485 types.

NOTE: If port 1 is used on the Twido controller, the DPT signal on pin 5 must be tied
to OV on pin 7. This signifies to the Twido controller that the communications through
port 1 is ASCII and is not the protocol used to communicate with the TwidoSuite
software.

35011386 05/2009

107



Communications

NOTE: For the TWDLEDCK1 Twido Extreme controller, if ASCII is used then 0V
must be applied to the communication strap contact (pin 22) to enable
communication. This indicates to the Twido controller that communication through
port 1 is not the protocol used to communicate with the TwidoSuite software.

Cable connections to each device are illustrated below.
Mini-DIN connection

RS232 EIA cable

Twido Remcte
controller peripheral
TXD [RXD[GND TXD |[RXD|GND
3 4 7] ] |

RS485 EIA cable

Twido (Master) Remote Remote
controller peripheral peripheral
D1(A+)| DO(B-)|[GND|DPT D1(A+)| DO(B-)|GND| |D1(A+)] DO(B-)|GND
1 2 | | I

L i

Terminal block connection

Master Remote Remote
controller peripheral peripheral
A(+)| B OV A BE) 0V A B OV
E_ B [sa [ | | I

Software Configuration

To configure the controller to use a serial connection to send and receive characters
using the ASCII protocol, you must:

Step Description
1 Configure the serial port for ASCII using TwidoSuite".
2 Create in your application a transmission/reception table that will be used by
the EXCHx instruction.

The following configuration options are not possible for the Twido Extreme TWDLEDCK1
PLC:

® 7 bit, no parity, 1 stop bit

® 8 bit, even parity, 2 stop bits

® 8 bit, odd parity, 2 stop bits

108 35011386 05/2009



Communications

Configuring the Port

A Twido controller can use its primary port 1 or an optionally configured port 2 to use
the ASCII protocol. (The Twido Extreme TWDLEDCK1 PLC has only one serial
port.)To configure a serial port for ASCII:

Step Action
1 Define any additional communication adapters or modules configured to the
base.
2 Declare the ASCII network in the Describe step of TwidoSuite (see and for
ASCII).

Select Port 1 (or Port 2 if installed) to configure in the Describe window (see ).

To configure the ASCII element, use any of the two methods:

e Click the Configure icon from the toolbar then select the ASCII element in
the describe graphic.

e Double click the ASCII element in the describe graphic.

5 To bring up the Feature dialog box associated to the ASCII link hardware

parameters, use any of the two methods:

e Click the Configure icon from the toolbar then select the ASCII link in the
describe graphic.

® Double click the ASCII link in the describe graphic.

6 Configure the Feature dialog box that appears, as explained in the subsequent
steps:.

Configuration

Network
Tife ascl v Narms ASCIN
Parameters

Baudrate 19200 ﬂ Stop Bits: 1 ﬂ

Data Bits 8(RTU) v Response Timeout: |10 x 100 ms
Parity: Even v Inter-frame Delay 2 ms

Cancel Advanced... OK )
7 Set the communication parameters.

The following configuration options are not possible for the Twido Extreme
TWDLEDCK1 PLC:

® 7 bit, no parity, 1 stop bit

e 8 bit, even parity, 2 stop bits

® 8 bit, odd parity, 2 stop bits

8 Click Advanced button to set the advanced parameters.

35011386 05/2009 109



Communications

Configuring the Transmission/Reception table for ASCIl mode

Control table

The maximum size of the transmitted and/or received frames is 256 bytes. The word
table associated with the EXCHXx instruction is composed of the transmission and
reception control tables.

Most significant byte Least significant byte

Control table Command Length (transmission/reception)
Reserved (0) Reserved (0)

Transmission table Transmitted Byte 1 Transmitted Byte 2

Transmitted Byte n

Transmitted Byte n+1

Reception table Received Byte 1 Received Byte 2

Received Byte p

Received Byte p+1

The Length byte contains the length of the transmission table in bytes (250 max.),
which is overwritten by the number of characters received at the end of the
reception, if reception is requested.

The Command byte must contain one of the following:

e 0: Transmission only
e 1: Send/receive
e 2: Reception Only

Transmission/reception tables

When in Transmit Only mode, the Control and Transmission tables are filled in prior
to executing the EXCHXx instruction, and can be of type %KW or %MW. No space is
required for the reception of characters in Transmission only mode. Once all bytes
are transmitted, %MSGx.D is set to 1, and a new EXCHx instruction can be
executed.

When in Transmit/Receive mode, the Control and Transmission tables are filled in
prior to executing the EXCHx instruction, and must be of type %MW. Space for up
to 256 reception bytes is required at the end of the Transmission table. Once all
bytes are transmitted, the Twido controller switches to reception mode and waits to
receive any bytes.

110

35011386 05/2009



Communications

Message Exchange

EXCHXx Instruction

When in Reception only mode, the Control table is filled in prior to executing the
EXCHx instruction, and must be of type %MW. Space for up to 256 reception bytes
is required at the end of the Control table. Twido controller immediately enters the
reception mode and waits to receive any bytes.

Reception ends when end of frame bytes used have been received, or the
Reception table is full. In this case, an error code (receive table overflowed) appears
in the word %SW63 and %SW64. If a non-zero timeout is configured, reception ends
when the timeout is completed. If a zero timeout value is selected, there is no
reception timeout. Therefore to stop reception, %MSGx.R input must be activated.

The language offers two services for the communication:

e EXCHXx instruction: to transmit/receive messages
e %MSGx Function Block: to control the message exchanges.

Twido controller uses the protocol configured for that port when processing an
EXCHx instruction.

NOTE: Each communications port can be configured for different protocols or the
same. The EXCHx instruction or %MSGx function block for each communications
port is accessed by appending the port number (1 or 2).

The EXCHx instruction allows the Twido controller to send and/or receive
information to/from ASCII devices. The user defines a table of words (%MWi:L or
%KWi:L) containing control information and the data to be sent and/or received (up
to 256 bytes in transmission and/or reception). The format for the word table is
described earlier.

A message exchange is performed using the EXCHx instruction:

Syntax: [EXCHx %MWi:L]
where: x = port number (1 or 2)

L = number of words in the control words and transmission and
reception tables

The Twido controller must finish the exchange from the first EXCHXx instruction
before a second can be launched. The %MSGx function block must be used when
sending several messages.

The processing of the EXCHx list instruction occurs immediately, with any
transmissions started under interrupt control (reception of data is also under
interrupt control), which is considered background processing.

35011386 05/2009

111



Communications

%MSGx Function Block

The use of the %MSGx function block is optional; it can be used to manage data
exchanges. The %MSGx function block has three purposes:

e Communications error checking
The error checking verifies that the parameter L (length of the Word table)
programmed with the EXCHx instruction is large enough to contain the length of
the message to be sent. This is compared with the length programmed in the
least significant byte of the first word of the word table.

e Coordination of multiple messages
To ensure the coordination when sending multiple messages, the %MSGx
function block provides the information required to determine when transmission
of a previous message is complete.

e Transmission of priority messages
The %MSGx function block allows current message transmissions to be stopped
in order to allow the immediate sending of an urgent message.

The %MSGx function block has one input and two outputs associated with it:

Input/Output Definition Description

R Reset input Set to 1: re-initializes communication or
resets block (%MSGx.E = 0 and %MSGx.D
=1).

%MSGx.D Communication 0: Request in progress.

complete 1: communication done if end of
transmission, end character received, error,
or reset of block.

%MSGx.E Error 0: message length OK and link OK.

1: if bad command, table incorrectly
configured, incorrect character received
(speed, parity, and so on.), or reception table
full.

Limitations
It is important to note the following limitations:

Port 2 availability and type (see %SW?7) is checked only at power-up or reset
Any message processing on Port 1 is aborted when the TwidoSuite is connected
EXCHXx or %MSG can not be processed on a port configured as Remote Link
EXCHpx aborts active Modbus Slave processing

Processing of EXCHx instructions is not re-tried in the event of an error

Reset input (R) can be used to abort EXCHXx instruction reception processing
EXCHx instructions can be configured with a time out to abort reception
Multiple messages are controlled via %MSGx.D

112 35011386 05/2009



Communications

Error and Operating Mode Conditions

If an error occurs when using the EXCHx instruction, bits %6MSGx.D and %MSGx.E
are set to 1 and system word %SW63 contains the error code for Port 1, and
%SW®64 contains the error code for Port 2.

System
Words

Use

%SW63

EXCH?1 error code:
0 - operation was successful

1 — number of bytes to be transmitted is too great (> 250)

2 - transmission table too small

3 - word table too small

4 - receive table overflowed

5 - time-out elapsed

6 - transmission error

7 - bad command within table

8 - selected port not configured/available

9 - reception error

10 - cannot use %KW if receiving

11 - transmission offset larger than transmission table
12 - reception offset larger than reception table
13 - controller stopped EXCH processing

%SW64

EXCH2 error code: See %SW63.

Consequence of Controller Restart on the Communication

If a controller restarts, one of the following events happens:

e A cold start (%S0 = 1) forces a re-initialization of the communications.
e A warm start (%S1 = 1) forces a re-initialization of the communications.
e In Stop, the controller stops all ASCIl communications.

ASCII Link Example

To configure an ASCII Link, you must:

. Configure the hardware.
. Connect the ASCIl communications cable.

. Write an application.

1
2
3. Configure the port.
4
5

. Initialize the Animation Table Editor.

35011386 05/2009

113



Communications

The diagram below illustrates the use of the ASCIl communications with a Terminal
Emulator on a PC.

Step 1: Configure the Hardware:

Twido
controller

RS232 EIA Port 2 Serial COM 2

VW3 A8106

The hardware configuration is two serial connections from the PC to a Twido
controller with an optional EIA RS232 Port 2. On a Modular controller, the optional
Port 2 is a TWDNOZ232D or a TWDNAC232D in the TWDXCPODM. On the
Compact controller, the optional Port 2 is a TWDNAC232D. The Twido Extreme
TWDLEDCK1 controller has only one serial port and thus does not have a Port 2.

To configure the controller, connect the TSX PCX1031 cable (not shown) to Port 1
of the Twido controller. Next, connect the cable to the COM 1 port of the PC. Be sure
that the switch is in position 2. Finally, connect the COM 2 port of the PC to the
optional EIA RS232 Port 2 on the Twido controller. The wiring schematic is provided
in the next step.

Step 2: ASCIl Communications Cable (EIA RS232) Wiring Schematic:

Twido Personal
controller computer
TXD|RXD|GND TXD [RXD [GND

I J

L I
al 4| 7 3|2‘5

The minimum number of wires used in an ASCII communications cable is 3. Cross
the transmit and receive signals.

NOTE: On the PC side of the cable, additional connections (such as Data Terminal
Ready and Data Set Ready) may be needed to satisfy the handshaking. No
additional connections are required to satisfy the Twido controller.

114

35011386 05/2009



Communications

Step 3: Port Configuration:

Hardware -> Add Option

Terminal Emulator on a PC

2nd end character
Stop on silence (ms)

TWDNQZ232D

Serial Port 2

Protocol ASCII
Address

Baud Rate 19200
Data Bits 8
Parity None
Stop Bit 1
Response Timeout (x100ms) 100
Time between frames (ms)

Start character

1st end character 65

Stop on the number of received bytes

COM2
19200
8 Bit
None
1 Bit
None

Use a simple Terminal Emulator application on the PC to configure the COM2 port

and to ensure that there is no flow control.

Use TwidoSuite to configure the controller’s port. First, the hardware option is
configured. In this example, the TWDNOZ232D is added to the Modular base

controller.

Second, the Controller Communication Setup is initialized with all of the same
parameter settings as the Terminal Emulator on the PC. In this example, capital
letter "A" is chosen for "1st end character", in order to terminate character reception.
A 10 second timeout is chosen for "Response Timeout" parameter. Only one of
these two parameters will be invoked, depending on whichever happens first.

Step 4: Write the application:

LD 1

[26MW10 = 1640104 ]
[26MW11 = 1640000 ]
[26MWA12 = 16#4F4B |
[%6MWA13 = 16#0A0D |
LD 1

AND %MSG2.D
[EXCH2 %MW10:8]
LD %MSG2.E

ST %Q0.0

END

35011386 05/2009

115



Communications

Use TwidoSuite to create an application program with three primary parts. First,
initialize the Control and Transmission tables to use for the EXCH instruction. In this
example, a command is set up to both send and receive data. The amount of data
to send will be set to 4 bytes, as defined in the application, followed by the end of
frame character used (in this case, the first end character "A"). Start and end
characters do not display in the Animation table, where only data characters show
up. Anyway, those characters are automatically transmitted or checked at reception
(by %SW63 and %SW64), when used.

Next, check the status bit associated with %MSG2 and issue the EXCH2 instruction
only if the port is ready. For the EXCH2 instruction, a value of 8 words is specified.
There are 2 Control words (%sMW10 and %MW11), 2 words to be used for transmit
information (%MW12 and %MW13), and 4 words to receive data (%MW14 through
%MW16).

Finally, the error status of the %MSG2 is sensed and stored on the first output bit on
the local base controller 1/0. Additional error checking using %SW64 could also be
added to make this more accurate.

Step 5: Initialize the Animation Table Editor:

Address Current Retained Format
1 %MW10 0104 Hexadecimal

2 %MW11 0000 Hexadecimal

3 %MW12 4F4B Hexadecimal

4 %MW13 0AOD  Hexadecimal

5 %MW14 TW ASCII

6 %MW15 ID ASCII

7 %MW16 O ASCII

The final step is to download this application controller and run it. Initialize an
Animation Table Editor to animate and display the %MW10 through %MW16 words.
On the Terminal Emulator, characters "O- K- CR - LF - A" can be displayed as many
times as the EXCH block response timeout has elapsed. On the Terminal Emulator,
typein"T-W-1-D-0O-A". This information is exchanged with Twido controller and
displayed in the Animation Table Editor.

116

35011386 05/2009



Communications

Modbus Communications

Introduction

The Modbus protocol is a master-slave protocol that allows for one, and only one,
master to request responses from slaves, or to act based on the request. The master
can address individual slaves, or can initiate a broadcast message to all slaves.
Slaves return a message (response) to queries that are addressed to them
individually. Responses are not returned to broadcast queries from the master.

A CAUTION

UNEXPECTED EQUIPMENT OPERATION

e Be sure that there is only one Modbus master controller on the bus and that
each Modbus slave has a unique address. Failure to observe this precaution
may lead to corrupted data or unexpected and ambiguous results.

e Be sure that all Modbus slaves have unique addresses. No two slaves should
have the same address. Failure to observe this precaution may lead to
corrupted data or unexpected and ambiguous results.

Failure to follow these instructions can result in injury or equipment damage.

Hardware Configuration

A Modbus link can be established on either the EIA RS232 or EIA RS485 port and
can run on as many as two communications ports at a time. Each of these ports can
be assigned its own Modbus address, using system bit %S101 and system words
%SW101 and %SW102 (see page 719).

The table below lists the devices that can be used:

Device Port | Specifications

TWDLC*A10/16/24DRF | 1 Base controller supporting a 3-wire EIA RS485 port with
, TWDLCe*40DRF, a miniDIN connector.

TWDLMDA20/40DTK,

TWDLMDA20DRT

TWDLEDCK1 1 Base controller equipped with non-isolated EIA RS485

type, maximum length limited to 200 m.

Note: The following configuration options are not
possible

® 7 bit, no parity, 1 stop bit

® 8 bit, even parity, 2 stop bits

® 8 bit, odd parity, 2 stop bits

35011386 05/2009

117



Communications

Device Port | Specifications

TWDNOZ232D 2 Communication module equipped with a 3-wire EIA
RS232 port with a miniDIN connector.

Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have an Operator Display expansion module.

TWDNOZ485D 2 Communication module equipped with a 3-wire EIA
RS485 port with a miniDIN connector.

Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have an Operator Display expansion module.

TWDNOZ485T 2 Communication module equipped with a 3-wire EIA
RS485 port with a terminal.

Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have an Operator Display expansion module.

TWDNAC232D 2 Communication adapter equipped with a 3-wire EIA
RS232 port with a miniDIN connector.

Note: This adapter is only available for the Compact 16,
24 and 40 I/O controllers and the Operator Display
expansion module.

TWDNAC485D 2 Communication adapter equipped with a 3-wire EIA
RS485 port with a miniDIN connector.

Note: This adapter is only available for the Compact 16,
24 and 40 I/O controllers and the Operator Display
expansion module.

TWDNAC485T 2 Communication adapter equipped with a 3-wire EIA
RS485 port with a terminal connector.

Note: This adapter is only available for the Compact 16,
24 and 40 I/O controllers and the Operator Display
expansion module.

TWDXCPODM 2 Operator Display expansion module equipped with a 3-
wire EIA RS232 port with a miniDIN connector, a 3-wire
EIA RS485 port with a miniDIN connector and a 3-wire
EIA RS485 port with a terminal.

Note: This module is only available for the Modular
controllers. When the module is attached, the controller
cannot have a Communication expansion module.

NOTE: The presence and configuration (RS232 or RS485) of Port 2 is checked at
power-up or at reset by the firmware executive program.

118 35011386 05/2009



Communications

Nominal Cabling

Nominal cable connections are illustrated below for both the EIA RS232 and the EIA

RS485 types.

NOTE: If port 1 is used on the Twido controller, the DPT signal on pin 5 must be tied
to the circuit common (COM) on pin 7. This signifies to the Twido controller that the

communications through port 1 is Modbus and is not the protocol used to

communicate with the TwidoSuite software.

NOTE: For the TWDLEDCK1 Twido Extreme controller, if Modbus is used for

programming then the communication strap contact (pin 22) must be disconnected.

If OV is applied to this contact (pin 22) this indicates to the Twido controller that
communication through port 1 is not the protocol used to communicate with the

TwidoSuite software.

The cable connections made to each remote device are shown below.

Mini-DIN connection

RS232 EIA cable

Twido Remote
controller peripheral
TXD[RXD]COM TXD [RXD[COM
3

4 7 |

R&485 EIA cable

Twido Remote
controller peripheral

Remote
peripheral

D1(A+)|D0(B-) [com pPT D1(A+)| DO(B-)
1 2 71 5] [l

e
I

D1(A+)| DO(B-)|com
\ |

Terminal block connection

Remote Master
controller controller

Remote
controller

A®)[ B 0V A B oV
K5 _Jso L 1 ]

A(I‘f)\ B%—)| ov

35011386 05/2009

119



Communications

Software Configuration

To configure the controller to use a serial connection to send and receive characters
using the Modbus protocol, you must:

Step

Description

1

Configure the serial port for Modbus using TwidoSuite.’

2

Create in your application a transmission/reception table that will be used by
the EXCHx instruction.

PLC:

The following configuration options are not possible for the Twido Extreme TWDLEDCK1

® 7 bit, no parity, 1 stop bit
® 8 bit, even parity, 2 stop bits
® 8 bit, odd parity, 2 stop bits

Configuring the Port

A Twido controller can use its primary port 1 or an optionally configured port 2 to use
the Modbus protocol. (The Twido Extreme TWDLEDCK1 PLC has only one serial
port.) To configure a serial port for Modbus:

Step

Action

1

Define any additional communication adapters or modules configured to the
base.

Declare the Modbus network in the Describe step of TwidoSuite (see .

Select Port 1 (or Port 2 if installed) to configure in the Describe window (see .

To configure the Modbus element, use any of the two methods:

e Click the Configure icon from the toolbar then select the Modbus element in
the describe graphic,

® Double click the Modbus element in the describe graphic.

To bring up the Feature dialog box associated to the Modbus link hardware

parameters, use any of the two methods:

e Click the Configure icon from the toolbar then select the Modbus link in the
describe graphic.

® Double click the Modbus link in the describe graphic.

120

35011386 05/2009



Communications

Modbus Master

Step

Action

Configure the Feature dialog box that appears, as explained in the subsequent
steps:.

TwidoSuite
Network
T Modbus v Name: Meodb1

Parameters

Baudrate 19200 v Stop Bits: 1 v
Data Bils 8 (RTU) v Response Timeout: |10 x 100 ms
Parity: Even v Inter-rame Delay: |2 ms

Cancel OK )

Select Modbus in the Protocol :Type box.

Set the associated communication parameters.

The following configuration options are not possible for the Twido Extreme
TWDLEDCK1 PLC:

® 7 bit, no parity, 1 stop bit

® 8 bit, even parity, 2 stop bits

® 8 bit, odd parity, 2 stop bits

Modbus master mode allows the controller to send a Modbus query to a slave, and
to wait for the response. The Modbus Master mode is only supported via the EXCHx
instruction. Both Modbus ASCII and RTU are supported in Modbus Master mode.

The maximum size of the transmitted and/or received frames is 250 bytes.
Moreover, the word table associated with the EXCHx instruction is composed of the
control, transmission and reception tables.

Most significant byte Least significant byte
Control table Command Length (Transmission/Reception)
Reception offset Transmission offset
Transmission table Transmitted Byte 1 Transmitted Byte 2

Transmitted Byte n

Transmitted Byte n+1

35011386 05/2009

121




Communications

Most significant byte Least significant byte

Reception table

Received Byte 1 Received Byte 2

Received Byte p

Received Byte p+1

Control table

NOTE: In addition to queries to invidual slaves, the Modbus master controller can
initiate a broadcast query to all slaves. The command byte in case of a boradcast
query must be set to 00, while the slave address must be set to 0.

The Length byte contains the length of the transmission table (maximum 250
bytes), which is overwritten by the number of characters received at the end of the
reception, if reception is requested.

This parameter is the length in bytes of the transmission table. If the Tx Offset
parameter is equal to 0, this parameter will be equal to the length of the transmission
frame. If the Tx Offset parameter is not equal to 0, one byte of the transmission table
(indicated by the offset value) will not be transmitted and this parameter is equal to
the frame length itself plus 1.

The Command byte in case of Modbus RTU request (except for broadcast) must
always equal to 1 (Tx and Rx).

The Tx Offset byte contains the rank (1 for the first byte, 2 for the second byte, and
so on) within the Transmission Table of the byte to ignore when transmitting the
bytes. This is used to handle the issues associated with byte/word values within the
Modbus protocol. For example, if this byte contains 3, the third byte would be
ignored, making the fourth byte in the table the third byte to be transmitted.

The Rx Offset byte contains the rank (1 for the first byte, 2 for the second byte, and
so on) within the Reception Table to add when transmitting the packet. This is used
to handle the issues associated with byte/word values within the Modbus protocol.
For example, if this byte contains 3, the third byte within the table would be filled with
a ZERO, and the third byte which was actually received would be entered into the
fourth location in the table.

Transmission/reception tables

When using either mode (Modbus ASCII or Modbus RTU), the Transmission table
is filled with the request prior to executing the EXCHx instruction. At execution time,
the controller determines what the Data Link Layer is, and performs all conversions
necessary to process the transmission and response. Start, end, and check
characters are not stored in the Transmission/Reception tables.

Once all bytes are transmitted, the controller switches to reception mode and waits
to receive any bytes.

122

35011386 05/2009




Communications

Modbus Slave

Reception is completed in one of several ways:

e timeout on a character or frame has been detected,
e end of frame character(s) received in ASCIl mode,
e the Reception table is full.

Transmitted byte X entries contain Modbus protocol (RTU encoding) data that is to
be transmitted. If the communications port is configured for Modbus ASCII, the
correct framing characters are appended to the transmission. The first byte contains
the device address (specific or broadcast), the second byte contains the function
code, and the rest contain the information associated with that function code.

NOTE: This is a typical application, but does not define all the possibilities. No
validation of the data being transmitted will be performed.

Received Bytes X contain Modbus protocol (RTU encoding) data that is to be
received. If the communications port is configured for Modbus ASCII, the correct
framing characters are removed from the response. The first byte contains the
device address, the second byte contains the function code (or response code), and
the rest contain the information associated with that function code.

NOTE: This is a typical application, but does not define all the possibilities. No
validation of the data being received will be performed, except for checksum
verification.

Modbus slave mode allows the controller to respond to standard Modbus queries
from a Modbus master.

When TSX PCX1031 cable is attached to the controller, TwidoSuite
communications are started at the port, temporarily disabling the communications
mode that was running prior to the cable being connected.

The Modbus protocol supports two Data Link Layer formats: ASCIl and RTU. Each
is defined by the Physical Layer implementation, with ASCII using 7 data bits, and
RTU using 8 data bits.

When using Modbus ASCII mode, each byte in the message is sent as two ASCII
characters. The Modbus ASCII frame begins with a start character ('), and can end
with two end characters (CR and LF). The end of frame character defaults to 0xOA
(line feed), and the user can modify the value of this byte during configuration. The
check value for the Modbus ASCII frame is a simple two's complement of the frame,
excluding the start and end characters.

Modbus RTU mode does not reformat the message prior to transmitting; however,
it uses a different checksum calculation mode, specified as a CRC.

The Modbus Data Link Layer has the following limitations:

e Address 1-247
e Bits: 128 bits on request
e Words: 125 words of 16 bits on request

35011386 05/2009

123



Communications

Message Exchange

EXCHXx Instruction

The language offers two services for communication:

e EXCHXx instruction: to transmit/receive messages
e %MSGx Function Block: to control the message exchanges.

The Twido controller uses the protocol configured for that port when processing an
EXCHx instruction.

NOTE: Each communications port can be configured for different protocols or the
same. The EXCHx instruction or %MSGx function block for each communications
port is accessed by appending the port number (1 or 2).

The EXCHXx instruction allows the Twido controller to send and/or receive
information to/from Modbus devices. The user defines a table of words (%MWi:L)
containing control information and the data to be sent and/or received (up to 250
bytes in transmission and/or reception). The format for the word table is described
earlier.

A message exchange is performed using the EXCHx instruction:

Syntax: [EXCHx %MWi:L]
where: x = port number (1 or 2)
L = number of words in the control words, transmission and reception tables

The Twido controller must finish the exchange from the first EXCHx instruction
before a second can be launched. The %MSGx function block must be used when
sending several messages.

The processing of the EXCHx list instruction occurs immediately, with any
transmissions started under interrupt control (reception of data is also under
interrupt control), which is considered background processing.

%MSGx Function Block

The use of the %MSGx function block is optional; it can be used to manage data
exchanges. The %MSGx function block has three purposes:

e Communications error checking
The error checking verifies that the parameter L (length of the Word table)
programmed with the EXCHx instruction is large enough to contain the length of
the message to be sent. This is compared with the length programmed in the
least significant byte of the first word of the word table.

e Coordination of multiple messages
To ensure the coordination when sending multiple messages, the %MSGx
function block provides the information required to determine when transmission
of a previous message is complete.

124

35011386 05/2009



Communications

Limitations

e Transmission of priority messages
The %MSGx function block allows current message transmissions to be stopped
in order to allow the immediate sending of an urgent message.

The %MSGx function block has one input and two outputs associated with it:

Input/Output Definition Description
R Reset input Set to 1: re-initializes communication or resets
block (%MSGx.E = 0 and %MSGx.D = 1).
%MSGx.D Communication 0: request in progress.
complete 1: communication done if end of transmission,
end character received, error, or reset of block.
%MSGx.E Error 0: message length OK and link OK.

1: if bad command, table incorrectly configured,
incorrect character received (speed, parity, and
so on.), or reception table full.

It is important to note the following limitations:

e Port 2 presence and configuration (RS232 or RS485) is checked at power-up or

reset

Any message processing on Port 1 is aborted when the TwidoSuite is connected
EXCHx or %MSG can not be processed on a port configured as Remote Link
EXCHx aborts active Modbus Slave processing

Processing of EXCHx instructions is not re-tried in the event of an error
Reset input (R) can be used to abort EXCHXx instruction reception processing
EXCHXx instructions can be configured with a time out to abort reception
Multiple messages are controlled via %MSGx.D

35011386 05/2009

125



Communications

Error and Operating Mode Conditions

If an error occurs when using the EXCHx instruction, bits %6MSGx.D and %MSGx.E
are set to 1 and system word %SW63 contains the error code for Port 1, and
%SW64 contains the error code for Port 2.

System Use
Words

%SW63 EXCH1 error code:

0 - operation was successful

1 — number of bytes to be transmitted is too great (> 250)
2 - transmission table too small

3 - word table too small

4 - receive table overflowed

5 - time-out elapsed

6 - transmission

7 - bad command within table

8 - selected port not configured/available

9 - reception error

10 - can not use %KW if receiving

11 - transmission offset larger than transmission table
12 - reception offset larger than reception table

13 - controller stopped EXCH processing

%SW64 EXCH2 error code: See %SW63.

Master Controller Restart
If a master/slave controller restarts, one of the following events happens:

e A cold start (%S0 = 1) forces a re-initialization of the communications.
e A warm start (%S1 = 1) forces a re-initialization of the communications.
e In Stop mode, the controller stops all Modbus communications.

Modbus Link Example 1
To configure a Modbus Link, you must:

. Configure the hardware."

1
2. Connect the Modbus communications cable.
3. Configure the port.

4. Write an application.

5. Initialize the Animation Table Editor.

126 35011386 05/2009



Communications

The diagrams below illustrate the use of Modbus request code 3 to read a slave’s
output words. This example uses two Twido Controllers.

The following configuration options are not possible for the Twido Extreme
TWDLEDCK1 PLC:

e 7 bit, no parity, 1 stop bit

e 8 bit, even parity, 2 stop bits

e 8 bit, odd parity, 2 stop bits

Step 1: Configure the Hardware:

o
IIIJ[ || RS485 EIA Port 1

RS485 EIA Port 2 TSX PC1031 Serial

Modbus Master .H| 1y A 3 ﬁ]
i 3

o
!lo:' | RS485 EIA Port 1

RS485 EIA Port 2

Serial Port Serial

VW3 A3106 @

The hardware configuration is two Twido controllers. One will be configured as the
Modbus Master and the other as the Modbus Slave.

NOTE: In this example, each controller is configured to use EIA RS485 on Port 1
and an optional EIA RS485 Port 2. On a Modular controller, the optional Port 2 can
be either a TWDNOZ485D or a TWDNOZ485T, or if you use TWDXCPODM, it can
be either a TWDNAC485D or a TWDNAC485T. On a Compact controller, the
optional Port 2 can be either a TWDNAC485D or a TWDNACA485T. The

Twido Extreme TWDLEDCKT1 controller has only one serial port and thus does not
have a Port 2.

To configure each controller, connect the TSX PCX1031 cable to Port 1 of the
controller.

NOTE: The TSX PCX1031 can only be connected to one controller at a time, on
RS485 EIA port 1 only.

Next, connect the cable to the COM 1 port of the PC. Be sure that the cable is in
switch position 2. Download and monitor the application. Repeat procedure for
second controller.

35011386 05/2009

127



Communications

Step 2: Connect the Modbus Communications Cable:

Mini-DIN connection

Twido Twido
Modbus Master Modbus Slave
D1(A+) | DO(B-) \ccljrvl D1(A+)] DO(B-)]COM
1 2 7 [ |

Terminal block connection

Twido Twido
Modbus Master Modhus Slave

D1(A+)| DO(B-) [ oV D1(A+)] DO(B-)
A !B [SG | |

ov

The wiring in this example demonstrates a simple point to point connection. The
three signals D1(A+), DO(B-), and COM(0V) are wired according to the diagram.

If using Port 1 of the Twido controller, the DPT signal (pin 5) must be tied to circuit
common (pin 7). This conditioning of DPT determines if TwidoSuite is connected.
When tied to the ground, the controller will use the port configuration set in the
application to determine the type of communication.

Forthe TWDLEDCK1 Twido Extreme controller, if Modbus is used for programming
then the communication strap contact (pin 22) must be disconnected. If OV is applied
to this contact (pin 22) this indicates to the Twido controller that communication

through port 1 is not the protocol used to communicate with the TwidoSuite software.

Step 3: Port Configuration':

Hardware -> Add Option Hardware -> Add Option
TWDNOZ485- TWDNOZ485-

Hardware => Controller Comm. Setting Hardware => Controller Comm. Setting
Serial Port 2 Serial Port 2

Protocol Modbus Protocol Modbus
Address 1 Address 2
Baud Rate 19200 Baud Rate 19200
Data Bits 8 (RTU) Data Bits 8 (RTU)
Parity None Parity None
Stop Bit _ 1 Stop Bit 1
Response Timeout (x100ms) 10 Response Timeout (x100ms) 100
Time between frames (ms) 10 Time between frames (ms) 10

128

35011386 05/2009



Communications

The following configuration options are not possible for the Twido Extreme
TWDLEDCK1 PLC:

e 7 bit, no parity, 1 stop bit
e 8 bit, even parity, 2 stop bits
e 8 bit, odd parity, 2 stop bits

In both master and slave applications, the optional EIA RS485 ports are configured.
Ensure that the controller's communication parameters are modified in Modbus
protocol and at different addresses.

In this example, the master is set to an address of 1 and the slave to 2. The number
of bits is set to 8, indicating that we will be using Modbus RTU mode. If this had been
set to 7, then we would be using Modbus-ASCIl mode. The only other default
modified was to increase the response timeout to 1 second.

NOTE: Since Modbus RTU mode was selected, the "End of Frame" parameter was
ignored.

Step 4: Write the application:

LD 1 LD 1
[%6MWO := 16#0106 | [%6MWO := 16#6566 |
[%MW1 = 1640300 | [%MW1 := 16#6768 |
[%6MW2 = 16#0203 | [%MW2 := 16#6970 |
[%MW3 = 1620000 | [%MW3 = 1647172 |
[26MW4 = 16#0004 ] END

LD 1

AND %MSG2.D
[EXCH2 %MW0:11]
LD %MSG2.E

ST %Q0.0

END

Using TwidoSuite, an application program is written for both the master and the
slave. For the slave, we simply write some memory words to a set of known values.
In the master, the word table of the EXCHx instruction is initialized to read 4 words
from the slave at Modbus address 2 starting at location %MWO.

NOTE: Notice the use of the RX offset set in %MW1 of the Modbus master. The
offset of three will add a byte (value = 0) at the third position in the reception area of
the table. This aligns the words in the master so that they fall correctly on word
boundaries. Without this offset, each word of data would be split between two words
in the exchange block. This offset is used for convenience.

Before executing the EXCH2 instruction, the application checks the communication
bit associated with %MSG2. Finally, the error status of the %MSG2 is sensed and
stored on the first output bit on the local base controller I/O. Additional error checking
using %SW64 could also be added to make this more accurate.

35011386 05/2009

129



Communications

Step 5:Initialize the animation table editor in the master:

Address Current Retained Format

1%MWS 0203 0000 Hexadecimal
2 %MW6E 0008 0000 Hexadecimal
3 %MWY 6566 0000 Hexadecimal
4 %MW8 6768 0000 Hexadecimal
5 %MWY 6970 0000 Hexadecimal
6 %MW10 7172 0000 Hexadecimal

After downloading and setting each controller to run, open an animation table on the
master. Examine the response section of the table to check that the response code
is 3 and that the correct number of bytes was read. Also in this example, note that
the words read from the slave (beginning at %MW?7) are aligned correctly with the
word boundaries in the master.

Modbus Link Example 2

The diagram below illustrates the use of Modbus request 16 to write output words to
a slave. This example uses two Twido Controllers.

Step 1: Configure the Hardware:

e
Ll RS485 EIA Port 1
.Ilt Rs4g5ElAPot2 - TOREEXIOST gy
Modbus Master “H 1 A 3
_— e 0
8 :
T RS485 EIA Port 1
..IIT RS485 EIA Port 2
Modbus Slave
Serial Port
VW3 A3106

The hardware configuration is identical to the previous example.

130 35011386 05/2009



Communications

Mini-DIN connection

Twido
Modbus Master
D1(A+)] DO(B-) | COM

1 2 7]

Step 2: Connect the Modbus Communications Cable (RS485):

Twido
Modbus Slave

D1(A1)] DO‘(B-) C(IJIVI

Terminal block connection

Twido
Modbus Master

D1(A+) | DO(B-) [ OV
B B |s

G

Twido
Modbus Slave

D1 (/I\+) [DO(B) [ OV

The Modbus communications cabling is identical to the previous example.

Step 3: Port Configuration:

Hardware -> Add Option

Hardware -> Add Option

TWDNOZ485- TWDNOZ485-

Hardware => Controller Comm. Setting Hardware => Controller Comm. Setting
Serial Port 2 Serial Port 2

Protocol Modbus Protocol Modbus
Address 1 Address 2

Baud Rate 19200 Baud Rate 18200
Data Bits 8 (RTU) Data Bits 8 (RTU)
Parity None Parity None
Stop Bit 1 Stop Bit 1

Response Timeout (x100ms) 10
Time between frames (ms) 10

Response Timeout (x100ms) 100
Time between frames (ms) 10

The port configurations are identical to those in the previous example.

35011386 05/2009

131



Communications

Step 4: Write the application:

LD 1 LD 1
B [%MWA18 = 165FFFF |
[%MWO = 16#010C ] ErD

[%MWA1 = 16#0007 |
[26MW2 = 16#0210 ]
[26MW3 = 16#0010 ]
[%MW4 = 16#0002 |
[2MWS = 16#0004 |
[26MWE = 16#6566 |
[2MW7 = 16#6768 |

LD 1

AND %MSG2.D
[EXCH2 %MWO0:11]
LD %MSG2.E

ST %Q0.0

END

Using TwidoSuite, an application program is created for both the master and the
slave. For the slave, write a single memory word %MW18. This will allocate space
on the slave for the memory addresses from %MWO through %MW18. Without
allocating the space, the Modbus request would be trying to write to locations that
did not exist on the slave.

In the master, the word table of the EXCH2 instruction is initialized to read 4 bytes
to the slave at Modbus address 2 at the address %MW16 (10 hexadecimal).

NOTE: Notice the use of the TX offset set in %MW1 of the Modbus master
application. The offset of seven will suppress the high byte in the sixth word (the
value 00 hexadecimal in %MWS5). This works to align the data values in the
transmission table of the word table so that they fall correctly on word boundaries.

Before executing the EXCH2 instruction, the application checks the communication
bit associated with %MSG2. Finally, the error status of the %MSG2 is sensed and
stored on the first output bit on the local base controller I/O. Additional error checking
using %SW64 could also be added to make this more accurate.

132 35011386 05/2009



Communications

Step 5:Initialize the Animation Table Editor:
Create the following animation table on the master:

1 %MWO
2 %MW1
3 %MW2
4 %MW3
5 %Mw\4
6 %MW5
7 %MWE
8 %MWY
9 %MW3
10 %MW

010C
0007
0210
0010
0002
0004
6566
6768
0210
0010

11 %MW10 0004

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

Address Current Retained Format

Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal

Create the following animation table on the slave:

Address Current Retained Format

1 %MW16 6566
2 %MWA17 6768

0000
0000

Hexadecimal
Hexadecimal

After downloading and setting each controller to run, open an animation table on the
slave controller. The two values in %MW16 and %MW17 are written to the slave. In
the master, the animation table can be used to examine the reception table portion
of the exchange data. This data displays the slave address, the response code, the
first word written, and the number of words written starting at %MW8 in the example

above.

35011386 05/2009

133



Communications

Standard Modbus Requests

Introduction

These requests are used to exchange memory words or bits between remote
devices. The table format is the same for both RTU and ASCII modes.

Format Reference number
Bit %Mi
Word %MWi

Modbus Master: Read N Bits

The following table represents requests 01 and 02.

Table Most significant byte Least significant byte
Index
Control table 0 01 06 (Transmission length) (*)
(Transmission/reception)
1 03 (Reception offset) 00 (Transmission offset)
Transmission 2 Slave@(1..247) 01 or 02 (Request code)
table 3 Address of the first bit to read
4 N4 = Number of bits to read
Reception table 5 Slave@(1..247) 01 or 02 (Response code)
(after response) | g 00 (byte added by Rx | N,
Offset action) = Number of data bytes to read
=[1+(N4-1)/8],
where [] means integral part
7 Value of the 15! byte Value of the 2™ byte (if Ny>1)
(value = 00 or 01)
8 Value of the 3™ byte
(if Ny>1)
(N2/2)+6 (ifN2is | value of the N, ™ byte (if
even) Ny>1)
(No/2+1)+6 (if
N, is odd

(*) This byte also receives the length of the string transmitted after response

134

35011386 05/2009




Communications

Modbus Master: Read N Words
The following table represents requests 03 and 04.

Table Most significant byte Least significant byte
Index
Control table 0 01 06 (Transmission length) (*)
(Transmission/reception)
1 03 (Reception Offset) 00 (Transmission offset)
Transmission table |2 Slave @(1..247) 03 or 04 (Request code)
3 Address of the first word to read
4 N = Number of words to read
Reception table 5 Slave @(1..247) 03 or 04 (Response code)
(after response) | 4 00 (byte added by Rx 2*N (number of bytes read)
Offset action)
7 First word read
Second word read (if N>1)
N+6 Word N read (if N>2)

(*) This byte also receives the length of the string transmitted after response

NOTE: The Rx offset of three will add a byte (value = 0) at the third position in the
reception table. This ensures a good positioning of the number of bytes read and of
the read words’ values in this table.

35011386 05/2009

135




Communications

Modbus Master: Write Bit
This table represents Request 05.

Table Most significant byte Least significant byte

Index
Control table 0 01 06 (Transmission length) (*)

(Transmission/reception)

1 00 (Reception offset) 00 (Transmission offset)
Transmission table |2 Slave@(1..247) 05 (Request code)

3 Address of the bit to write

4 Bit value to write
Reception table 5 Slave @(1..247) 05 (Response code)
(after response) | g Address of the bit written

7 Value written

(*) This byte also receives the length of the string transmitted after response

NOTE:

e This request does not need the use of offset.

o The response frame is the same as the request frame here (in a normal case).

e Fora bitto write 1, the associated word in the transmission table must contain the
value FFOOH, and 0 for the bit to write 0.

136

35011386 05/2009




Communications

Modbus Master: Write Word
This table represents Request 06.

Table Most significant byte Least significant byte

Index
Control table 0 01 06 (Transmission length) (*)

(Transmission/reception)

1 00 (Reception offset) 00 (Transmission offset)
Transmission table | 2 Slave @(1..247) 06 (Request code)

3 Address of the word to write

4 Word value to write
Reception table 5 Slave @(1..247) 06 (Response code)
(after response) 6 Address of the word written

7 Value written

(*) This byte also receives the length of the string transmitted after response

NOTE:

e This request does not need the use of offset.
e The response frame is the same as the request frame here (in a normal case).

35011386 05/2009

137




Communications

Modbus Master: Write of N Bits
This table represents Request 15.

Table Most significant byte Least significant byte
Index
Control table |0 01 8 + number of bytes
(Transmission/reception) | (transmission)
1 00 (Reception Offset) 07 (Transmission offset)
Transmission |2 Slave @(1..247) 15 (Request code)
table
Number of the first bit to write
N4 = Number of bits to write
5 00 (byte not sent, offset | No
effect) = Number of data bytes to write
=[1+(N4-1)/8],
where [] means integral part
6 Value of the 15t byte Value of the 2" byte
7

Value of the 3" byte

Value of the 4" byte

Value of the N, " byte

is even)
(No/241)45 (if
N, is odd
Reception Slave@(1..247) 15 (Response code)
table (after Address of the 15 bit written
response)
Address of bits written (= N4)
NOTE:

e The Tx Offset=7 will suppress the 7th byte in the sent frame. This also allows a
good correspondence of words’ values in the transmission table.

138

35011386 05/2009




Communications

Modbus Master: Write of N Words
This table represents Request 16.

Table Most significant byte Least significant byte
Index
Control table 0 01 8 + (2*N) (Transmission
(Transmission/reception) | length)
1 00 (Reception offset) 07 (Transmission offset)
Transmission table | 2 Slave @(1..247) 16 (Request code)
3 Address of the first word to write
4 N = Number of words to write
5 00 (byte not sent, offset 2*N = Number of bytes to
effect) write
6 First word value to write
Second value to write
N+5 N values to write
Reception table N+6 Slave @(1..247) 16 (Response code)
(after response) N+7 Address of the first word written
N+8 Address of words written (= N)

NOTE: The Tx Offset = 7 will suppress the 7th byte in the sent frame. This also
allows a good correspondence of words’ values in the transmission table.

35011386 05/2009

139




Communications

Modbus Function Codes 23 (MB FC) - Read/Write Multiple registers and N Words

Description

The Read/Write Multiple Registers function code performs a combination of one
read operation and one write operation in a single Modbus transaction.

NOTE: The write operation is performed before the read operation.

Holding registers are addressed starting at zero. Therefore, holding registers 1 to 16
are addressed in the PDU as 0 to 15.

Request Parameters

The request specifies the starting address and the number of holding registers to be
read as well as the starting address, the number of holding registers and the data to

be written.
The byte count specifies the number of bytes that will be written in the write date
field.
The following tables gives the Read/Write Multiple Registers request parameter
values:

Parameter Number of Bytes Values

Function code 1 Byte 0x17

Read Starting Address 2 Bytes 0x0000 to OxFFFF

Quantity to Read 2 Bytes 0x0000 to approx. 0x0076

Write Starting Address 2 Bytes 0x0000 to OxFFFF

Quantity to Write 2 Bytes 0x0000 to approx. 0x0076

Write Byte Count 1 Byte N* x 2

Write Registers Value N* x 2 Bytes

N* is the quantity to write.

140 35011386 05/2009



Communications

Response Parameters

Error Parameters

The standard response contains the data from the group of registers that were read.
The byte count parameter specifies the quantity of bytes that will be contained in the
read data field.

The following tables gives the Read/Write Multiple Registers response parameter
values:

Parameter Number of Bytes Values
Function code 1 Byte 0x17
Byte Count 1 Byte N*x 2
Read Register Value N* x 2 Bytes

N* is the quantity to write.

The following table gives the values for the returned errors.

Parameter Number of Bytes Values
Error code 1 Byte 0x97
Exception code 1 Byte 01, 02, 03 or 04

35011386 05/2009

141



Communications

Transmission/Reception table
The following tables give the significant byte parameters for transmission/reception:

Index Most significant byte Least significant byte

Control Table 0 01 (Transmission/reception) 12 + (2N) (Transmission
length)

1 03 (Reception offset) 11 (Transmission offset)
Transmission Table 2 2 Slave address (1,,,147) 23 (Request code)

3 Address of the first word to read

4 X = Number of words to read

5 Address of the first word to write

6 N = Number of words to write

7 00 (Byte not sent, offset effect) | 2*N = NB of bytes to write

8 First value to write

9 Second value to write

N+5 N value to write
ReceptionTable(after N+6 Slave address (1,,,147) 23 (Request code)
reponse) N+7 00 ( bytes added due to 2*X = NB of bytes read

reception offset)

N+8 First word read

N+9 Second word read ( if X>1)

X+N+7 Word N read ( if N>2)

NOTE: This request code 23 is only avaible with Twido base TWDLCxx40DRF.

142 35011386 05/2009




Communications

Modbus Function Codes 43/14 (MB FC) - Read Device Identification

Description

Device ldentification Structure

The Read Device Indentification function code retrieves the identification of a
remote device as well as additional information relative its physical and functional

description.

The Read Device Identification interface is modeled as an address space composed
of a set of addressable data elements. The data elements are called objects
identified by an object ID.

The interface consists of three categories of objects:
e Basic Device Identification - All objects of this category are mandatory:
e VendorName
e Product code

e Revision number

e Regular Device Identification - In addition to Basic data objects, the device
provides additional and optional identification and description data objects. All of
the objects of this category are defined in the standard but their implementation
is optional

o Extended Device Identification - In addition to regular data objects, the device
provides additional and optional identification and description private data about
the physical device itself. All of these data objects are device dependent.

The interface objects are summarized in the table below:

Object ID | Object Name/Description Type Mm/0 Category
0x00 VendorName ASCII string Mandatory | Basic
0x01 ProductCode ASCII string Mandatory

0x02 MajorMinorRevision ASCI! string Mandatory

0x03 VendorURL ASCII string Optional Regular
0x04 ProductName ASCII string Optional

0x05 ModelName ASCII string Optional

0x06 UserApplicationName ASCII string Optional

0x07 Reserved Optional

Ox7F

0x80 Optionally, private objects may be | Device Optional Extended
defined. dependent

OxFF The range [0x80 - OxFF] is

product dependent.

35011386 05/2009

143




Communications

Request Parameters

The request for Read Device Identification function code is composed of the
following parameters:

Parameter Description

Function Code Function code 43 (decimal), 20x2B (hex).

Modbus Modbus Encapsulated Interface is assigned number 14 which
Encapsulated identifies the read identification request interface.

Interface (MEI) type

Read Device ID Code | Read Device ID Code: this parameter defines four access types:

® 01 - request to retrieve the basic device identification (stream
access)

® 02 - request to retrieve regular device identification (stream
access)

® 03 - request to retrieve extended device identification (stream
access)

® 04 - request to retrieve one specific identification object
(individual access)

An exception code 03 is returned in the response if the Read Device
ID Code is illegal.

Note: If the server is asked for a description level (Read Device ID
code) higher than its conformity level, it must respond in
accordance with its actual conformity level.

Object ID For Read Device ID Codes 01, 02 or 03 - stream access

This parameter is used if a response cannot fit in a single response
and several transactions (requests/responses) need to be
generated in order to get the full response.

The Object ID byte gives the identification of the first object to be
retrieved.

For the first transaction, the Object ID must be set to 0 to obtain the
beginning of the device identification data.

For the following transactions, the Object ID must be set to the
value returned by the server in its previous response.

If the Object ID does not match any known object, the server
responds as though the Object ID had been set to 0 and restarts at
the beginning.

For Read Device ID Code 04 - individual access

The object ID identifies the object to be returned.

If the Object ID does not match any known objects, the server
returns an exception response with exception code 02 (illegal data
address).

144 35011386 05/2009



Communications

Request Parameters Value Table

The following values can be given to the request parameters:

Parameter Bytes Possible values
Function Code 1 byte 0x2B

MEI Type 1 byte O0x0E

Read Device ID code 1 byte 01, 02, 03, 04
Object ID 1 byte 0x00 to OxFF

Response Parameters

The table below describes the response parameters returned for Read Device

Identification request:

Parameter

Description

Function Code

Function code 43 (decimal), 20x2B (hex).

Modbus
Encapsulated
Interface (MEI) type

MEI is assigned number 14 which identifies the read identification
request interface.

Read Device ID Code

The Read Device ID codes returned are the same as the ones
included in the request: 01, 02, 03 or 04.

Conformity Level

Identification conformity level of the device and type of access
supported:

01 - basic identification (stream access only)

02 - regular identification (stream access only)

03 - extended identification (stream access only)

81 - basic identification (stream access and individual access)
82 - regular identification (stream access and individual access)
83 - extended identification (stream access and individual
access)

More follows

For Read Device ID Codes 01, 02 or 03 - stream access

If the response returned does not fit into a single response, several

transactions may be required to send the response. The following

applies:

e 00 : no more objects are available

® FF: otheridentification objects are available and further Modbus
transactions are required.

For Read Device ID Code 04 - individual access
This parameter must be set to 00.

Next Object ID

If More Follows is set to FF, this contains the identification of the
next object to be requested.

If More Follows is set to 00, this must be set to 00 (the parameter
becomes useless).

35011386 05/2009

145




Communications

Parameter

Description

Number of Objects

Number of identification objects returned in the response.
Note: In the case of an individual access, Number of Objects is
always set to 1.

Object0.ld

Identification of the first object returned in the PDU (stream access)
or the requested object (individual access).

Object0.Length

Length of the first object in bytes.

Object0.Value

Value of the first object (Object0.Length bytes).

ObjectN.ld

Identification of the last object returned within the response.

ObjectN.Length

Length of the last object in bytes.

ObjectN.Value

Value of the last object (ObjectN.Length bytes).

Response Parameters Value Table
The following values can be given to the request parameters:

Parameter Bytes Possible values
Function Code 1 byte 0x2B

MEI Type 1 byte O0xO0E

Read Device ID code 1 byte 01, 02, 03, 04
Conformity level 1 byte

More Follows 1 byte 00/FF

Next Object ID 1 byte Object ID number
List of:

Object ID 1 byte

Object Length 1 byte

Object Value Object Length | Value depends on the object ID

Error Parameters Value Table

The following values can be found in error codes returned:

Parameter Bytes Possible values
Function Code 1 byte O0xAB:

Fc 0x2B + 0x80
MEI Type 1 byte 14
Exception code 1 byte 01/02/03/04

146

35011386 05/2009



Communications

Transparent Ready Implementation Class (Twido Serial A05, Ethernet A15)

Overview

The following Modbus Function codes are supported by both serial Modbus and
TCP/IP Modbus. For detailed information about Modbus protocol, please refer to
document Modbus Application Protocol which is available at http:/www.modbus-

ida.org

Twido Supported Modbus Function Codes (MB FC)

The following table describes function codes supported by both Twido serial and
TCP/IP Modbus:

Supported | Supported Sub-fc | Function

MB FC code

1 — Read multiple internal bits %M

2 — Read multiple internal bits %M

3 — Read multiple internal registers %MW

4 — Read multiple internal registers %MW

5 — Force single internal bit %M

6 — Write single internal register %MW

8 00 only Echo diagnostics

15 — Write multiple internal bits %M

16 — Write multiple internal registers %MW

23 — Read/write multiple internal registers %MW
43 14 Read device identification (regular service)

35011386 05/2009

147




Communications

148 35011386 05/2009



Built-In Analog Functions

Subject of this Chapter

This chapter describes how to manage the built-in analog channel and

potentiometers.

What's in this Chapter?

This chapter contains the following topics:

Topic Page
Analog potentiometer 150
Analog Channel 152

35011386 05/2009

149




Built-In Analog Functions

Analog potentiometer

Introduction

Programming

Example

Twido controllers have:

e An analog potentiometer on TWDLCeA10DRF, TWDLC*A16DRF controllers and
on all modular controllers (TWDLMDA20DTK, TWDLMDA20DUK,
TWDLMDA20DRT, TWDLMDA40DTK and TWDLMDA40DUK,

o Two potentiometers on the TWDLCeA24DRF and TWDLCee40DRFcontrollers.

The numerical values, from 0 to 1023 for analog potentiometer 1, and from 0 to 1023
for analog potentiometer 2, corresponding to the analog values provided by these
potentiometers are contained in the following two input words:

e %IWO0.0.0 for analog potentiometer 1 (on left)

® %IW0.0.1 for analog potentiometer 2 (on right)

These words can be used in arithmetic operations. They can be used for any type
of adjustment, for example, presetting a time-delay or a counter, adjusting the
frequency of the pulse generator or machine preheating time.

Adjusting the duration of a time-delay from 5 to 10 s using analog potentiometer 1:

For this adjustment practically the entire ‘
adjustment range of analog 10s
potentiometer 1 from 0 to 1023 is used.

Ss

0 1023

The following parameters are selected at configuration for the time-delay block
%TMO:

e Type TON

e Timebase: 10 ms

The preset value of the time-delay is calculated from the adjustment value of the
potentiometer using the following equation %TMO.P := (%IW0.0.0/2)+500.

150

35011386 05/2009



Built-In Analog Functions

Code for the above example:

%MW 0:=%IW0.0.0/2
LD 1
N [¢oMW0:=%IW0.0.0/2]
%TMO0.P:=%MW0+500 [%0TMO.P:=2%MWO0+500]
_ BLK  %TMO
LD %010.0
%TMO IN
%l0.0 %Q0.0 OUT BLK
| {0 LD Q
4{ ‘ N Q v ST %Q0.0
END BLK

35011386 05/2009 151



Built-In Analog Functions

Analog Channel

Introduction

All Modular controllers (TWDLMDA20DTK, TWDLMDA20DUK, TWDLMDA20DRT,
TWDLMDA40DTK, and TWDLMDA40DUK) have a built-in analog channel. The
voltage input ranges from 0 to 10 V and the digitized signal from 0 to 1023

. The analog channel takes advantage of a simple averaging scheme that takes
place over eight samples.

Principle

An analog to discrete converter samples an input voltage from 0 to 10 V to a discrete
value from 0 to 1023. This value is stored in system word %IW0.0.1. The value is

linear through the entire range, so that each increment is approximately 20 mV (10
V/512). Once the system detects value 1023, the channel is considered saturated.

Programming Example

Controlling the temperature of an oven: The cooking temperature is set to 350°C.
A variation of +/- 2.5°C results in tripping of output %Q0.0 and %Q0.2, respectively.
Practically all of the possible setting ranges of the analog channel from 0 to 1023 is
used in this example. Analog setting for the temperature set points are:

Temperature Voltage |System Word %IW0.0.0
Q)

0 0 0

347.5 7.72 395

350 7.77 398

352.5 7.83 401

450 10 1023

152

35011386 05/2009



Built-In Analog Functions

Code for the above example:

YIW0.0.0 = 395

%Q0.0

U

%IW0.0.0 <= 398

%Q0.1

£

Vo

%IW0.0.0 >= 401

%Q0.2

{0

L

LD
ST

LD
ST

LD
ST

[2TW0.0.0 = 395]
%Q0.0

[26TW0.0.0 <= 398]
9%Q0.1

[2IW0.0.0 >= 401]
%Q0.2

35011386 05/2009

153



Built-In Analog Functions

154 35011386 05/2009



Managing Analog Modules

Subject of this Chapter

This chapter provides an overview of managing analog modules for Twido
controllers.

What's in this Chapter?
This chapter contains the following topics:

Topic Page
Analog Module Overview 156
Addressing Analog Inputs and Outputs 157
Configuring Analog Inputs and Outputs 159
Analog Module Status Information 166
Example of Using Analog Modules 168

35011386 05/2009 155



Managing Analog Modules

Analog Module Overview

Introduction

In addition to the built-in 10-bit potentiometer and 9-bit analog channel, all the Twido
controllers that support expansion I/O are also able to configure and communicate
with analog I/O modules.

These analog modules are:

Name Points Signal Range Encoding
TWDAMI2HT 21In 0-10 Voltsor 4-20mA |12 Bit
TWDAMI2LT 21In Inputs - Thermocouple 16 bit
TWDAMOTHT |1 Out 0-10 Voltsor 4-20mA |12 Bit

TWDAMMS3HT | 21In, 1 Out 0-10Voltsor 4-20mA |12 Bit
TWDAMMGHT | 4 In, 2 Out 0-10Voltsor 4-20mA | 12 Bit

TWDALM3LT 21n, 1 Out 0 - 10 Volts, Inputs Th or 12 Bit
PT100, Outputs 4 - 20 mA

TWDAVO2HT |2 Qut +/- 10 Volts 11 Bit + sign
TWDAMI4LT 41n 0-10 Volts, 0-20 mA, NI | 12 Bit

or PT 3-wire sensors
TWDAMISHT 81In 0- 10 Volts or 0 - 20 mA 10 Bit
TWDARIBHT 81In NTC or PTC sensors 10 Bit

Operating Analog Modules

Input and output words (%IW and %QW) are used to exchange data between the
user application and any of the analog channels. The updating of these words is
done synchronously with the controller scan during RUN mode.

A WARNING

UNINTENDED EQUIPMENT OPERATION
Be aware of the output default values when the controller is in STOP mode.

e The analog output is set to its fall-back position.
e The discrete output is set to zero.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

156 35011386 05/2009



Managing Analog Modules

Addressing Analog Inputs and Outputs

Introduction

Addresses are assigned to the analog channels depending on their location on the
expansion bus.

Example of Addressing Analog I/O

In this example, a TWDLMDA40DUK has a built-in analog-adjusted 10-bit
potentiometer, a 9-bit built-in analog channel. On the expansion bus are the
following: a TWDAMMBSHT analog module, a TWDDMMBS8DRT input/output discrete
relay module, and a second TWDAMMB3HT analog module are configured.

ANALOG
IN OUuT

DCIN ANALOG
IN ouT

(R

Relay OUT

Twido
+_‘N o) -| +1
e ! ¥
o 9 (2]
S 1 z 2
+73 = +5
2 |s ] E 2
58 o 3
g1 |& il Ea
+Z o o +Z
H 7 g
TR = o}
81|~ I &l
+Z e E l::l +2
|8 J o W
Fa

dad Jdud Jud

Base Module 1 Module 2 Module 3

35011386 05/2009 157



Managing Analog Modules

The table below details the addressing for each output.

Description Base Module 1 | Module 2 Module 3
Potentiometer 1 %IW0.0.0
Built-in analog channel %IW0.0.1
Analog input channel 1 %IWO0.1.0 %IW0.3.0
Analog input channel 2 %IWO0.1.1 %IW0.3.1
Analog output channel 1 %QW0.1.0 %QW0.3.0
Discrete input channels %I10.2.0 - %10.2.3
Discrete output channels %Q0.2.0 -

%Q0.2.3

158 35011386 05/2009



Managing Analog Modules

Configuring Analog Inputs and Outputs

Introduction

This section provides information on configuring analog module inputs and outputs.

Configuring Analog I/O

Use the Configuration Editor to set parameters of analog I/O modules that you
added as expansion modules when you described the system (see ).

NOTE: All analog I/O configuration parameters can be modified online and offline.
For example, for the TWDAMI2LT module the Type of input (J, K or T) can be
modified both offline and online.

Configuration Editor Contents

In Program — Configure — Configure the Hardware the configuration pane
displays a Description zone containing the reference number and a short
description of the module followed by the module configuration table.

If you have several modules in your system then to display the configuration table
for the appropriate module, click on the desired module in the upper graphical pane.
The following example shows the hardware configuration pane for the TWDAMI2LT
module.

Module description zone Configuration table

A J =l
DNescriptinn nf the madule Refarence im [ TWnAMELT Address [1 el ol =
Description Expansicn module with 2 analog inputs (RTD -Th), 12 bits, =
rernovahlz screw terminal. K, J, T thermocouple. (S0mA)
=
Module configuration. AppI) I ﬁiﬂii I
I/0 Table
‘Uaed‘ Address ‘ Symbol ‘ Type | Scope | Minimurm | Ma ximum | Units
T % ml Mormal 0 4085 Mone
0 % Mat in use Mormal 0 4095 Mone
Thermocouple K
Th e
Therrmocouple T 3
k4]
i

35011386 05/2009

159



Managing Analog Modules

Description

Address

Symbol

The table shows: Address, Symbol, Type, Range, Minimum, Maximum and

Units

e In TWDAMI4LT and TWIDAMI8HT, the table is preceded by an Input type list

box.

e In TWDAVO2HT and TWDAMI8HT, the Type column is replaced by a
Configured column with check boxes.

e In TWDARI8HT, each channel (0-7) is configured individually within a tab, in
which you can choose either the Chart or Formula configuration method. The
table can be seen in a Recap tab.

The Description zone displays a short summary of the module.

Each row of the spreadsheet represents either an input or output channel of the

module.

The addresses of each of these are identified in the following table, where "i" is the
location of the module on the expansion bus.

Module Name

Address

TWDAMI2LT

2 Inputs (%IWi.0, %IWi.1)

TWDALMS3LT

2 Inputs (%IWi.0, %IWi.1), 1 Output (%QWi.0)

TWDAMMSHT

2 Inputs (%IWi.0, %IWi.1), 1 Output (%QWi.0)

TWDAMM6GHT

4 Inputs (%IWi.0 to %IWi.3), 2 Outputs (%QWi.0, %QWi.1)

TWDAMI2HT

2 Inputs (%IWi.0, %IWi.1)

TWDAMO1THT

1 Output (%QWi.0)

TWDAVO2HT

2 Outputs (%QWi.0, %QWi.1)

TWDAMIALT

4 Inputs (%IWi.0 to %IWi.3)

TWDAMIBHT

8 Inputs (%IWi.0 to %IWi.7)

TWDARIBHT

8 Inputs (%IWi.0 to %IWi.7)

This is a read-only display of a symbol, if assigned, for the address.

Input and Output Type
This identifies the mode of a channel. The choices depend on the channel and type

of module.

160

35011386 05/2009



Managing Analog Modules

For the TWDAMO1HT, TWDAMMS3HT and TWDALMS3LT, you can configure the
single output channel type as:

Type
Not in use
0-10V
4-20mA

For the TWDAMMBGHT, you can configure the 4 input and the 2 output channel types
as:

Input type
0-10V
4-20mA

For the TWDAMI2HT and TWDAMMBHT, you can configure the 2 input channel
types as:

Type
Not in use
0-10V
4-20mA

For the TWDAMI2LT, you can configure the 2 input channel types as:

Type
Not in use

Thermocouple K

Thermocouple J

Thermocouple T

NOTE: ‘In order to use the TWDAMI2LT module, make sure your PLC firmware is
version 4.0 or later.

For the TWDALMBLT, you can configure the 2 input channel types as:

Type
Not in use

Thermocouple K

Thermocouple J

Thermocouple T
PT 100

35011386 05/2009 161



Managing Analog Modules

For the TWDAVO2HT, there is no type to adjust.
For the TWDAMI4LT, you can configure the 4 input types as:

Input type | Type

Not in use
0-10V

Not in use
0-20 mA

Not in use
PT 100
Temperature | PT 1000
NI 100

NI 1000

Voltage

Current

For the TWDAMI8HT, you can configure the 8 input types as:

Input type
0-10V
0-20mA

For the TWDARI8HT, you can configure each input channel (0-7) individually, from
the Operation field in the lower part of the window. Directly choose a Mode, and a
Range, if needed. You can then view a summary of all information in the Recap tab,
with a Type column showing:

Type

Not in use
NTC /CTN
PTC/CTP

A CAUTION

INPUT CONFIGURATION ERROR

Be sure that the wiring is in agreement with the TwidoSuite configuration.If you
have wired your input for a voltage measurement, and you configure TwidoSuite
for a current type of configuration, you may permanently damage the analog
module.

Failure to follow these instructions can result in injury or equipment damage.

162 35011386 05/2009



Managing Analog Modules

Range

This identifies the range of values for a channel. The choices depend on the specific

type of channel and module.

Once the Type is configured, you can set the corresponding Range. A table shows

the Minimum and Maximum values accepted - either fixed or user-defined -

together with the Unit, if needed.

Range (NTC | Minimum Maximum Units /0 Analog
sensors) Modules
TWDAMI2LT
TWDALM3LT
TWDAMOTHT
0 4095 TWDAMMB3HT
TWDAMMGHT
Normal None TWDAMI2HT
TWDAMI4LT
-2048 2047 TWDAVO2HT
TWDAMIBHT
0 1023 TWDARIBHT
U§er def‘med U§er defined All /O Analog
Custom with a min. of | with a max. of | None Modules
-32768 32767
Celsius K: -2700 K: 13700 0.1°C TWDAMI2LT
J: -2000 J: 7600
T: -2700 T: 4000
K: 0 K: 13000 TWDALMS3LT
J:0 J: 12000
T:0 T: 40000
Dynamically updated by TWDARI8BHT
TwidoSuite according to user-
defined parameters
-2000 6000 TWDAMI4LT
(Pt sensor)
500 1500 TWDAMI4LT
(Ni sensor)

35011386 05/2009

163



Managing Analog Modules

Range (NTC | Minimum Maximum Units 1/0 Analog
sensors) Modules
Fahrenheit K: -4540 K: 24980 0.1°F TWDAMI2LT
J: -3280 J: 14000
T: -4540 T: 7520
K: 320 K: 23720 TWDALM3LT
J: 320 J: 21920
T: 320 T: 7520
Dynamically updated by TWDARISHT
TwidoSuite according to user-
defined parameters
3980 11120 TWDAMI4LT
(Pt sensor)
-580 3020 TWDAMI4LT
(Ni sensor)
100 10000 TWDARISBHT
74 199 TWDAMI4LT
(Ni100)
742 1987 TWDAMI4LT
Resistance Ohm (Ni1000)
18 314 TWDAMI4LT
(Pt100)
184 3138 TWDAMI4LT
(Pt1000)

164

35011386 05/2009




Managing Analog Modules

Chart or Formula Method

In TWDARI8HT, each channel (0-7) is configured individually within a tab. Check the
Used box then choose between Chart and Formula configuration methods.

e Chart (graphical) method
(R1, T1) and (R2, T2) correspond to float format coordinates of two points
belonging to the curve.
R1(default 8700) and R2 (default 200) values are expressed in Ohms.
T1 (default 233.15) and T2 (default 398.15) values can have their unit set in the
Unit list box: Kelvin (default), Celsius or Fahrenheit.
Note: Changing the temperature unit after setting the T1 and T2 values will not
automatically recalculate T1 and T2 values with the new unit.

e Formula method
Provided you know Rref, Tref and B parameters, you can use this method to
define sensor characteristics.
Rref (default 330) is expressed in Ohms.
B is default 3569 (min. 1, max. 32767).
Tref (default 298.15) can have its unit set in the Unit list box: Kelvin (default),
Celsius or Fahrenheit.

Here is a table of corresponding min./max. Tref values between units:

Unit Min. value Max. value
Kelvin 1 650
Celsius -272 376
Fahrenheit | -457 710

In both Chart and Formula windows, you can import values from another channel in
the currently configured channel:

1. Select a channel number out of the Channel No box.

2. Press the Import values button.

Some error messages can be associated with these windows.

NOTE: If you start setting values then decide to switch from Chart to Formula or from
Formula to Chart, a message pops up, explaining that it will revert to default values
and that any modified values will be lost.

35011386 05/2009 165



Managing Analog Modules

Analog Module Status Information

Status Table
The following table has the information you need to monitor the status of Analog I/0
modules.

System | Function Description

Word

%SW80 | Base I/O Status | For standard analog module, %SW8x is described as follows:

Bit [0] All analog channels in normal state

Bit [1] Module in initialization state

Bit [2] Power supply default

Bit [3] Configuration default

Bit [4] Conversion in running for input channel 0
Bit [5] Conversion in running for input channel 1
Bit [6] Invalid parameter for input channel 0

Bit [7] Invalid parameter for input channel 1

Bit [8 & 9] Not used

Bit [10] Overflow value for input channel 0

Bit [11] Overflow value for input channel 1

Bit [12] Underflow value for input channel 0

Bit [13] Underflow value for input channel 1

Bit [14] Not used

Bit [15] Invalid parameter for output channel

%SW80
cont'd

Base I/O Status
cont'd

For TWDAMI4LT and TWDAMMG6HT analog modules, %SW8x is described as
follows:

Bit [0 & 1] Channel O state

0 0: Analog channel in normal state

0 1: Invalid parameter for input channel

1 0: Unavailable input value (module in initialization state, conversion in running),
1 1: Invalid value for input channel (overflow or underflow value)

Bit [2 & 3] Channel 1 state (same description as bit [0 & 1])

Bit [4 & 5] Channel 2 state (same description as bit [0 & 1])

Bit [6 & 7] Channel 3 state (same description as bit [0 & 1])

Bit [8 to 15] Not used

166

35011386 05/2009



Managing Analog Modules

System | Function Description

Word

%SW80 | Base I/O Status | For TWDAMI8HT analog module, %SW8x is described as follows:
cont'd cont'd Bit [0 & 1] Channel 0O state

0 0: Analog channel in normal state

0 1: Invalid parameter for input channel

1 0: Unavailable input value (module in initialization state, conversion in running),
1 1: Invalid value for input channel (overflow or underflow value)
Bit [2 & 3] Channel 1 state (same description as bit [0 & 1])

Bit [4 & 5] Channel 2 state (same description as bit [0 & 1])

Bit [6 & 7] Channel 3 state (same description as bit [0 & 1])

Bit [8 & 9] Channel 4 state (same description as bit [0 & 1])

Bit [10 & 11] Channel 5 state (same description as bit [0 & 1])
Bit [12 & 13] Channel 6 state (same description as bit [0 & 1])
Bit [14 & 15] Channel 7 state (same description as bit [0 & 1])

%SW81 | Expansion I/O Module 1 Status: Same definitions as %SW80
%SW82 | Expansion I/O Module 2 Status: Same definitions as %SW80
%SW83 | Expansion I/O Module 3 Status: Same definitions as %SW80
%SW84 | Expansion I/O Module 4 Status: Same definitions as %SW80
%SW85 | Expansion I/O Module 5 Status: Same definitions as %SW80
%SW86 | Expansion I/O Module 6 Status: Same definitions as %SW80
%SW87 | Expansion I/O Module 7 Status: Same definitions as %SW80

35011386 05/2009 167



Managing Analog Modules

Example of Using Analog Modules

Introduction

This section provides an example of using Analog modules available with Twido.

Example: analog input

This example compares the analog input signal with five separate threshold values.
A comparison of the analog input is made and a bit is set on the base controller if it
is less than or equal to the threshold.

%IW1.0 < 16 %0.0
—
%IW1.0 < 32 %Q0.1
—
2IW1.0 < 64 %Q0.2
-
%IW1.0 < 128 260003
—
%IW1.0 < 256 26004

L=

LD [%IW1.0 < 16]
ST %Q0.0

LD [%IW1.0 < 32]
ST %00.1

LD [%IW1.0 < 64]
ST %Q0.2

LD [26TW1.0 < 128]
ST %Q0.3

LD [%IW1.0 < 256]
ST %Q0.4

168

35011386 05/2009



Managing Analog Modules

Example: analog output

The following program uses an analog card in slot 1 and 2. The card used in slot 1

has a 10-volt output with a "normal" range:

%QW0.1.0:=4095

%QW0.2.0:=2%MW0

|
B

LD 1
[%6QW0.1.0:=4095
LD 1
[26QW0.2.0:=26MWO

e Example of output values for %QW1.0=4095 (normal case):

The following table shows the output voltage value according to the maximum value
assigned to %QW1.0:

numerical value analog value (volt)
Minimum 0 0
Maximum 4095 10
Value 1 100 0.244
Value 2 2460 6

e Example of output values for a customized range (minimum = 0, maximum =

1000):

The following table shows the output voltage value according to the maximum value
assigned to %QW1.0:

numerical value analog value (volt)
Minimum 0 0
Maximum 1000 10
Value 1 100 1
Value 2 600 6

35011386 05/2009

169




Managing Analog Modules

170 35011386 05/2009



Twido Extreme Input/Output
Configuration

Subject of this Chapter

This chapter provides an overview of the Twido Extreme base inputs and outputs
and describes input and output addressing.

What's in this Chapter?
This chapter contains the following sections:

Section Topic Page
8.1 An Introduction to Twido Extreme Inputs and Outputs 172
8.2 Twido Extreme Input Configuration 175
8.3 Twido Extreme Output Configuration 194
35011386 05/2009 171




Twido Extreme Input/Output Configuration

8.1

An Introduction to Twido Extreme Inputs and
Outputs

Twido Extreme Addressing Inputs/Outputs (1/0)

Introduction

1/0 Addresses

The Twido Extreme base has a single 70-pin connector which includes the power
supply, inputs, outputs and communication bus. This section provides an overview
of the inputs and outputs and their addresses.

Each input/output (I/O) point in a Twido configuration has a unique address. For
example, the address "%I10.0.4" is assigned to input 4 of the PLC.

The address format is as follows:

% [, IW, Q 0 5 i
‘Symbol | Type of object 0 indicates ‘ hannel
Twido Extreme umber
base

%l is used for discrete input, %IW for analog (and PWM) input and %Q is used for
discrete (and PWM) output.

172

35011386 05/2009



Twido Extreme Input/Output Configuration

Types of Input/Output
The following table provides a summary of the type and number of Twido Extreme

inputs and

outputs and their addresses:

KEY SWITCH INPUT (total of 1)

INPUTS (total of 22)

Type Maximum Address Range
Number
Discrete Switch to Ground (source) 11 %10.0 - %I0.10
Switch to Battery (sink) 2 %I10.11, %l0.12
Analog Active Analog Sensor 4 %IW0.0 - %IW0.3
Passive Analog Sensor 3 %IW0.4 - %IWO0.6
Analog/P | Active Analog Sensor or Pulse Width 1 %IWO0.7
WM Modulation® (1 kHz maximum)
PWM Pulse Width Modulation (5 kHz maximum) | 1 %IW0.8
OUTPUTS (total of 19)
Type Number Address
Discrete 1 A discrete current sourcing driver 1 %Q0.4
50 mA discrete current sourcing driver, 1 %Q0.3
Dedicated SECU, PLC status output
12/24 V 300 mA digital current sinking 14 %Q0.5 - %Q0.18
driver
PLS/PWM | PLS or PWM (10 Hz to 1 kHz) 2 %Q0.0, %Q0.1

PLS or PWM (10 Hz to 5 kHz

1

%Q0.2

' Note: The input %IW0.7 can be used as either an active analog input or a PWM input

For further information on the specification and pin position for these inputs and
outputs see .

35011386 05/2009

173




Twido Extreme Input/Output Configuration

Key Switch

1/0 Updates

The key switch is a special (physical) input which is used to:
e turn the Twido Extreme on and off
e set the Twido Extreme in standby mode.

NOTE: To enable WARM restart from standby mode, the Twido Extreme must not
be disconnected from the power supply. If the power supply is not maintained, the
controller performs a COLD restart and date and time information is lost.

In standby mode the Twido Extreme keeps RAM alive and RTC data intact but this
implies that the PLC must be connected to the power supply (as it has no internal
battery). To illustrate this further an analogy to a car ignition switch can be made.
The key switch works like a car ignition switch which is linked to the car radio. When
the engine is switched off, the car radio is also switched off, but the radio channels,
time and other data are preserved in memory. As long as the radio is not
disconnected from the car battery, when the motor is restarted the radio is restarted
with all the data intact.

The key switch has not been allocated an address in the above table as this is a
special type of input that cannot be configured in TwidoSuite and therefore has no
dedicated address.

Input bits (%l for discrete), input words (%IW for analog) and output (%Q) bits are
used to exchange data between the user application and the discrete or analog
channels. These objects are updated synchronously with the controller scan during
RUN mode.

174

35011386 05/2009



Twido Extreme Input/Output Configuration

8.2 Twido Extreme Input Configuration

Subiject of this Section
This section describes the input configuration for the Twido Extreme PLC.

What's in this Section?
This section contains the following topics:

Topic Page
Twido Extreme Discrete Input Configuration 176
Twido Extreme Analog Input Configuration 181
Twido Extreme PWM Input Configuration 186
Twido Extreme PWM Input Configuration Example 188
35011386 05/2009 175




Twido Extreme Input/Output Configuration

Twido Extreme Discrete Input Configuration

Introduction

Discrete Input

Input Filtering

Input Forcing

This section describes the configuration of discrete inputs.

There are two main types of discrete input:

e Switch to Ground input
e Switch to Battery input (+)

Discrete input consist of Input Values, Rising Edge Values, and Falling Edge Values.
The Rising and the Falling Edge values are computed from the current image and
the previous image data from two consecutive scans.

Each input can be filtered, forced or latched

Input filters reduce the effect of noise on the PLC input . Setting a filter value of 3 (or
12) ms ensures that sudden changes of input levels (due to noise) are ignored
unless this new input level persists for 3 (or 12) ms.

Forced values may be assigned to input (and output) values in a user-defined
list/ladder program. This maybe useful for debugging purposes. This is described
in forcing input/output values.

176

35011386 05/2009



Twido Extreme Input/Output Configuration

Input Latching

Input latching is a special function that can be assigned to all or any one of the four
inputs (%I0.0 to %I10.3) on a Twido Extreme.This function is used to memorize (or
latch) any pulse with a duration less than the controller scan time. When a pulse is
shorter than one scan and has a value greater than or equal to 1 ms, the controller
latches the pulse, which is then updated in the next scan. Due to noise consider-
ations, a latched input must persist for more than 1ms in order to be recognised as
a rising edge. This latching mechanism only recognises rising edges. Falling edges
cannot be latched. Assigning inputs to be latched is done via the discrete input
configuration screen presented below.

To ensure proper detection of a pulse signal when the latching input option is
selected, the pulse width (Tpy) and the period (P) must meet the following two
requirements:
o Tony21ms
e The input signal period (P) must be at least twice the maximum program scan

time (%SW31):

P> 2x %SW31

NOTE: If this condition is not fulfilled, some pulses may be missed

The following figure shows the input signal requirements when latching input is
used:

Tz 1ms
il

Pz 2x%SW31

Discrete Input Addresses

The following table shows the addresses assigned to Twido Extreme discrete
inputs:

DISCRETE INPUTS (total of 13)

Type Max Number Address Range
Switch to Ground (source) 11 %I0.0 - %l10.10
Switch to Battery (sink) 2 %10.11, %10.12

35011386 05/2009

177



Twido Extreme Input/Output Configuration

The key switch has not been included in the above table as this is a special type of
input that cannot be configured in TwidoSuite and has no dedicated address. For
more information (see Twido Extreme Addressing Inputs/Outputs (I/O), page 172).

NOTE: In ladder programs the I/O address syntax is %I0.i (i=0...19) and %QO0.]
(i=0...18) as is displayed in the configuration tables. In list programs however, the
syntax %IW0.0.i and %Q0.0.j is used to refer to these same addresses. Inputs
%10.13-%10.19 are discrete mappings of analog inputs.

Discrete Input Configuration

Discrete inputs used in the ladder/list program may be viewed and configured in the
Program — Configure — Configure the Hardware Module Configuration pane of
TwidoSuite.

The Module Configuration Input tab lists all inputs used and available, as shown
below:

Module configuration.

Inputs | Qutputs | CAN J1939 ‘ CANopen ‘
Table of inputs
|Used| Address ‘ Symbaol ‘ Used By ‘ Filtering ‘ Latch? ‘Run!Stupﬂ Deactiv ation High Priority SR_Mumber
T %00 Ims - O Mot used =
T %0 3 ms o] ] Mot used ]
T %02 Ims I O Mot used ]
O %03 3ms [ O Mot used B
T %04 3ms =] O
T %05 3ms 5] O
T %06 3ms o] O
T %07 3 ms = O
[ Ims =] O
© %09 3 ms 5] O
T %010 3ms 5] O
T %01 3ms o] O
0 %012 3 ms o] O
M %013 Mo Filter 7] (]
IR Mo Filter 7] (]
T %015 Ho Filter o] ]
O %015 Mo Filter o] ]
T %017 Mo Filter =] [C]
T %018 Mo Filter o] ]
T %0138 Mo Filter o] ]

NOTE: In online mode, the input values are also displayed.

The first 4 inputs %I0.0 - %10.3 can be either latched or used for events (rising edge,
falling edge or both) and thus can be linked to a subroutine.

The first 13 inputs %I10.0 - %I10.12 can be filtered (3 ms or 12 ms) and one of these
may be used for a RUN/STOP function.

%10.0 to %I0.10 are Switch to Ground inputs.
%I10.11 to %10.13 are Switch to Battery inputs.

178

35011386 05/2009



Twido Extreme Input/Output Configuration

The analog inputs %IW0.0 to %IW0.6 are associated with the discrete inputs %I0.13
to %I10.19 which change state depending on the corresponding analog values, as

shown in the table below :

Discrete Input Change of State

Corresponding Analog Value

1t00 <1.2VDC

Oto1 >3.1VDC

For example, if %IW0.0 > 3.1V, %I0.13 changes from 0 to 1.
These inputs cannot be filtered or latched or associated to an event.

Input Configuration Fields

The input configuration fields displayed in the above figure are detailed in the
following table. As indicated certain fields in this table are for display purposes only

and cannot be modified.

Field Possible Values Function

Used Check box selected or not. For display purposes only. Displays inputs
Selected relates to used. used by the program.
Cleared relates to unused.

Address Input Addresses %I0.0-%10.19 Address of each discrete input.

Symbol User defined value: alphanumeric max 32 characters. | To provide name for input. This field can be
edited. When applied, this name is then
displayed in the Ladder/List program.

Used by user logic, Event For display purposes only. Lists any
function blocks using this input, or indicates
whether the input is used to trigger an
event.

Filter Drop-down list box with following options: Filters are used to reduce the effect of noise

e No filter on the PLC input.
® 3ms
e 12ms
Latch? Check box selected or not. Latching allows incoming pulses with
This applies to only the first 4 inputs %10.0 to %I0.3. | amplitude widths shorter than the PLC scan
Inputs with filters cannot be latched. time to be captured and recorded.
Inputs associated with events cannot be latched.
Selected relates to latched.
Cleared relates to not latched.
Run/Stop? Check box selected or not. To run or stop a PLC program.
This applies to only the first 13 inputs %I0.0 - %I0.12.
Selected relates to RUN.
Cleared relates to STOP.

35011386 05/2009

179




Twido Extreme Input/Output Configuration

Field Possible Values Function
Deactivation Drop-down list box with following options: To configure whether an event is triggered
e Not used by an input.
e Rising edge
e Falling edge
e Both edges
High Priority Check box selected or not. To make an event high priority (triggered).
Only one input (%10.0 to %I0.3) can be chosen.
This can only be selected if there is an event
triggered, (i.e., Deactivation field is anything other
than "Not Used").
SR Number A subroutine number selected from drop down list To assign a subroutine number to an event
box. (triggered).
This can only be selected if there is an event
triggered, (i.e., Deactivation field is anything other
than "Not Used").

180

35011386 05/2009



Twido Extreme Input/Output Configuration

Twido Extreme Analog Input Configuration

Introduction
This section describes the configuration of analog inputs and provides an example.

Analog Input
There are three types of analog input :

e Active (Sensor) Analog input
e Passive (Sensor) Analog input
e PWM input

Active sensors use external power to provide signals.
Passive sensors use part of the signal energy.
PWM inputs are described in the next section.

Analog Input Addresses
The following table shows the addresses assigned to Twido Extreme analog inputs:

ANALOG INPUTS (total of 9)

Type Max Number Address Range
Active 4 %IWO0.0 - %IW0.3
Passive 3 %IW0.4 - %IW0.6
Analog/PWM 1 %IWO0.7

PWM 1 %IW0.8

35011386 05/2009 181



Twido Extreme Input/Output Configuration

Analog Input Configuration

Analog inputs used in the ladder/list program may be viewed and configured in the

Program — Configure — Configure the Hardware Module Configuration pane of
TwidoSuite.

Scrolling down in the Module Configuration Input tab lists the analog inputs used and
available, as shown below :

Table of analog inputs

|Used | Address | Symbal | Equivalent to |  Scope | Minimum | Maximum
0 s%woo %I0.13 Mormal o 5120
0 %o %I0.14 Hormal 0 5120
0 %hwo2 %I0.15 Mormal a 5120
0 %wo3 %I0.16 Morrnal o 5120
0 %04 %I0.17 Haormal 1} 5120
o Tl 4 DT Murrnal o 5120
0 %wWo4 %1017 Mormal o 5120
Table of PWM inputs
|Used | Address Symbaol Type Scope Iimimm um Maxirmnurm | J'J
0 siwoy Frequency Mormal a 2000
] %lW0.8 Freguency Marral o 2000 ﬁ
&
- |

NOTE: In online mode, the input values are also displayed.
The first 4 inputs %IWO0.0 - %IW0.3 are Active inputs.
The next 4 inputs %IWO0.4 - %IWO0.6 are Passive inputs.

The analog inputs %IW0.0 to %IW0.6 are associated with the discrete inputs %I0.13
to %10.19 which change state depending on the corresponding analog values, as
shown in the table below :

Discrete Input Change of State | Corresponding Analog Value
1t00 <1.2VDC
Oto1 >3.1VDC

For example, if %IW0.0 > 3.1V, %I0.13 changes from 0 to 1.

%IW0.7 and %IW0.8 are PWM inputs and are described in the next section. %IW0.7
can also be used, however, for analog input if desired.

182 35011386 05/2009



Twido Extreme Input/Output Configuration

Input Configuration Fields

The input configuration fields displayed in the above figure are detailed in the
following table. As indicated, certain fields in this table are for display purposes only

and cannot be modified.

Field Possible Values Function

Used Check box selected or not. For display purposes only. Displays inputs
Selected relates to used. used by the program. This field cannot be
Cleared relates to unused. edited.

Address Input Addresses %IW0.0-%IW0.6 Address of each analog input.

Symbol User defined value: alphanumeric max 32 characters. | To provide name for input. This field can

be edited. When applied, this name is
then displayed in the Ladder/List program.

Equivalent to

%I10.13 to %I10.19

For display purposes only. Lists
equivalent discrete mappings.

Scope

Drop-down list box with following options:
o Normal (default)
o Customized

Enables the voltage range to be selected
(normal mode) or altered (customized
mode) in the subsequent fields.

Maximum/Mini
mim

Normal mode: min 0, max 5120

%IW range: min 0, max 5120
corresponding to

voltage range: min 0, max 5 V.
These fields cannot be edited.

Customized mode: min -32,768, max +32,767 in user
defined units.

Enables customization of analog input. In
customized mode these fields can be
edited.

35011386 05/2009

183




Twido Extreme Input/Output Configuration

Example: Analog Input

This example compares the analog input signal with five separate threshold values.
A comparison of the analog input is made and if it is less than the threshold a bit is

set in Twido Extreme.

(1) LD _‘ |

Aung 0 BIWO0 1 <16 !

%01 <16 %EA00 |

< { %‘

[Funat | |
%0 <32

%IW0T <32 %01 I

H

RAung 2

%IW0.1 <64
%UMW0A <64

H

Rung 3

W01 <128
“%MW0.1 <128

:

Rung 4

The same example is shown below as a List program:
0 LD [ %IW0.0.1<16 ]

WIW0 <256
“%MWO0A <2566

:

ST $Q0.0.0

LD [ %IW0.0.1<32 ]

1
2
3 ST %Q0.0.1
4

LD [ %IW0.0.1<64 ]

184

35011386 05/2009



Twido Extreme Input/Output Configuration

5
6
7
8
9

ST
LD
ST
LD
ST

$00.0.2

[ $IW0.0.1<128

$00.0.3
$IW0.0.0<256

$00.0.4

]

]

NOTE: In ladder programs the 1/O address syntax is %IWO0.i (i=0...8) and %QO0.]
(7=0...18) as is displayed in the configuration tables. In list programs however, the
syntax %IW0.0.i and %Q0.0.j is used to refer to these same addresses.

35011386 05/2009

185



Twido Extreme Input/Output Configuration

Twido Extreme PWM Input Configuration

Overview

PWM Input

This section describes the configuration of PWM inputs.

Pulse Width Modulation (PWM) input is a special type of input that converts a
rectangular signal input into a parameter (calculating it from the signal).

This is particularly useful in creating a more stable environment which is less
sensitive to noise disturbance.

For example, a single axis lever (see Twido Extreme PWM Input Configuration
Example, page 188) can be used with more precision with less risk of erratic
behavior caused by noise. This is a distinctive feature of the Twido Extreme PLC.

PWM Input Addresses

The adresses %IW0.7 and %IW0.8 are dedicated to Twido Extreme PWM inputs,
but %IWO0.7 may also be used as an Analog input.

PWM Input Configuration

PWM outputs can be viewed and configured in the Program — Configure —
Configure the Hardware Module Configuration pane of TwidoSuite.

Scroll down the Configuration pane to display the Table of PWM Inputs as shown
below:

Table of PWM inputs
|Used | Address | Symbol | Type | Seope | Minimum | Maximum |
O %07 Frequency Hormal 2000
O %hwi0.g Freguency Mormal 0 2000

Bl =g

e

186

35011386 05/2009



Twido Extreme Input/Output Configuration

Input Configuration Fields

The PWM input configuration fields are described in the following table. As
indicated, certain fields in this table are for display purposes only (read-only) and

cannot be modified.

o Normal (default)
o Customized

Field Possible Values Function
Used Check box selected or not. For display purposes only. Displays inputs
Selected relates to used. used by the program. This field cannot be
Cleared relates to unused. edited.
Address Input Addresses %IW0.7,%IW0.8 Address of each Analog/PWM input.
Symbol User defined value: alphanumeric max 32 characters. | To provide name for input. This field can be
edited. When applied, this name is then
displayed in the Ladder/List program.
Type Drop-down list box with following options: Select Analog if this is to be used as analog
® Analog input.
e Frequency (default) If input is PWM choose which parameter
® Ratio you want to convert the PWM input signal
® Pulse width into.
Scope Drop-down list box with following options: Enables the range to be customized in the

subsequent fields.

Maximum/Mini
mum

Normal mode:

Frequency: min 0, max 20000
Ratio: min 0, max 100

Pulse width: min 0, max 20000

In normal mode, these fields cannot be
edited.

Customized mode:
For all Types: min -32768, max 32767

Enables analog/PWM input to be
customized. In customized mode these
fields can be edited.

35011386 05/2009

187




Twido Extreme Input/Output Configuration

Twido Extreme PWM Input Configuration Example

Introduction

This section illustrates how to configure a Twido Extreme PWM input by means of
an application example.

In this example you will learn how to:
e configure a PWM input to accept a single-axis lever, and
e use this input to control the speed and direction of a motor.

PWM Input Example

As illustrated below, a motor is controlled via a single-axis lever with PWM output
and an ATV31 drive. The lever position provides the speed and rotation direction
(forwards or reverse).

—

The different hardware labelled in this example are listed below:

Diagram | Reference Description

label

1 TWDLEDCK1 Twido Extreme PLC

TWDXPUJ1A Single-axis lever

3 VW3A8114 BlueTooth dongle - to enable wireless transfer from PC to
PLC

4 ATV31HO037M2A | Altivar ATV31 drive - to change speed and direction of
motor

188

35011386 05/2009



Twido Extreme Input/Output Configuration

Diagram | Reference Description

label

5 VW3CANTAP2 CANopen junction box (TAP) - to connect the ATV31 drive
to the PLC

6 - Motor 0.37kW 1490 rpm

7 - PC with TwidoSuite software

8 XB6AV5BB Yellow Harmony style 6 signalling unit

9 XB6AV4BB Red Harmony style 6 signalling unit

10 XB6AV3BB Green Harmony style 6 signalling unit

The direction and speed of the motor depend on the PWM duty cycle provided by
the lever output signal:

Condition

Result

If duty cycle > 52%

Motor turns clockwise, speed = (duty cycle - 50)*30 rpm,
green signal unit lights up

If 48% < duty cycle < 52%

Motor stops, red signal unit lights up

If duty cycle < 48%

Motor turns anticlockwise, speed = (50 - duty cycle )*30 rpm,
yellow signal unit lights up

A CANopen network is used between the PLC and the Altivar drive. The
Twido Extreme has an integrated CANopen field bus so no additional CANopen
module is required.

The Altivar drive is controlled by the DRIVE macro that is used in the PLC program.

35011386 05/2009

189



Twido Extreme Input/Output Configuration

Creating Application Example

Follow the steps below to create the example previously described in this section
using TwidoSuite.

Step Action

1 Declare the Twido Extreme in the Describe window using drag and drop from
the describe catalog and create a CANopen network with an ATV31 drive to
control the motor speed and direction.

Note: Implementing a CANopen bus (see page 276) describes how to create
CANopen networks . For Twido Extreme a CANopen master module is not
required as this is integrated in the Twido Extreme. Other CANopen features
for the Twido Extreme are presented in CANopen Fieldbus Overview,

page 262.

2 Configure the PWM input using TwidoSuite, to convert the PWM signal
generated by the single axis lever to a ratio.

3 Write a program to activate Twido Extreme outputs depending on the ratio
value calculated from the input signal.

4 Physically connect the hardware components previously listed to the
Twido Extreme PLC.

5 Transfer the program from the PC to the PLC.

Configuring PWM Input

In Program — Configure — Configure the Hardware — Input tab — Table of PWM
inputs, choose Ratio in the Type field for the %IWO0.7 input, as follows:

Table of PWM inputs

|Used‘ Address Symbol Type Scope Minimum ‘ Maxirnurm 1
[ 0.7 Ratio MNarmal 100

0 %IW0.8 Freguency Mormal 1} 100 ﬁ

£

i Jﬁ

NOTE: Further details on these configuration fields are provided in PWM Input
Configuration (see page 186).

190 35011386 05/2009



Twido Extreme Input/Output Configuration

PWM Input Programming Example

The program is shown here first in ladder and then in list. The program uses the
macro DRIVE to control the Altivar drive.

e
START MACRO DRIVE
L@ D MANAGER O
SHORT D_MANAGER D
IF P RAT IO » 529 RUN FORWARD
Bl HIWOT 52
WIW0T7 =52 %00 5
s
< 1’
O_AUN-FWD 0
D-RON-FWD 0
IF PV RAT IO < 46% RUN REVERSE
gl SLIV0.7 < 48 0 AUN-REV
%EIW0.7 < 48 O AUN-REV O
Ho <] [
%006
I
1S
IF PWM RATIO 1S BETWEEN 48% AND 52% STOP MG
unge |l pisc s oy s 0 SToPG
AIWDT7 5= 4B %IW0T <= 52 D_STOP O
H < M < ] I
%Q0 7
I
kS
ADJUST RATIC TO MOTOR SPEED
Funge | SR 01 = 9Bl 7 <50
w05 LM 01 = %W 7 - 50
| |
SLATAA 00 = 30 " MW O1
SCATAA 00 = 30 * MW 01
Rung 5
Rungs | SLATAA 01 = 50 - %6IW0.7
%06 SEAMWA 01 = 50 - %W07
4{ H —

FEMWA DO =20 " %MW 01
ZEMWA D0 =20 " %MW 01

SEND SPEED TO ATV
Rung &

D_SETPOINT_MODE_0:=0
SHORT “EMWE =0

D_SETPCINT_0Q = %hW100
“eMW4 = a1 00

D_SELECT_SPEED O
D_SELECT_SPEEDO

Pungs | D CLEAR ERAO

%I0.0 D_CLEAR ERRO

35011386 05/2009 191



Twido Extreme Input/Output Configuration

PWM Input Application Example List Program:
—-—-——(* START MACRO DRIVE ¥*)

0 1D 1

1 [ D MANAGER 0 ]

—-———(* IF PWM RATIO > 52% RUN FORWARD *)
2 LD [ %IW0.0.7 > 52 ]

3 ST $00.0.5

4 [ D RUN FWD O ]

--———(* IF PWM RATIO < 48% RUN REVERSEY*)
5 LD [ %IW0.0.7 < 48 ]

6 [ D RUN REV 0 ]

7 ST $00.0.6

--——(* IF PWM RATIO IS BETWEEN 48% AND 52 % STOP MOTOR *)
8 LD [ SIW0.0.7 >= 48 ]

9 AND [ %IW0.0.7 <= 52 ]

10 [ D_STOP 0 ]

11 ST %Q0.0.7

----(* ADJUST RATIO TO MOTOR SPEED *)
12 LD %00.0.5

13 [ $SMW101l := $IW0.0.7 - 50 ]

14 [ SMW100 := 30 * SMW101l ]

15 LD %Q0.0.6

16 [ $MW101l := 50 - $IW0.0.7 ]
17 [ $SMW100 := 30 * SMW101l ]
--——(* SEND SPEED TO ATV ¥*)

18 ILD 1

19 [ SMW3 := 0 ]

20 [ sMW4 := SMW100 ]

21 [ D _SELECT SPEED 0 |
-———(* RESET ERROR BIT *)
22 LD %10.0.0

23 [ D_CLEAR ERR 0 ]

192 35011386 05/2009



Twido Extreme Input/Output Configuration

Ladder/List I/O Syntax

NOTE: In ladder programs the 1/0 address syntax is %IWO0.i (i=0...8) and %QO0.]
(7=0...18) as is displayed in the configuration tables. In list programs however, the
syntax %IW0.0.i and %Q0.0.j is used to refer to these same addresses.

Input/Output Connections

Connect the hardware inputs and outputs:

Connect the output of the lever to the %IW0.7 Twido Extreme input.

Connect the Altivar drive input via the junction box to the Twido Extreme
CANopen port.

Connect the Twido Extreme outputs %Q0.5, %Q0.6 and %Q0.7 to the signalling
units to enable the system to be monitored.

Connect the Altivar drive to the motor.

Connect the BlueTooth dongle to the Twido Extreme for program transfer.

NOTE: For more information about the single-axis lever and I/O connections (see ).

35011386 05/2009

193



Twido Extreme Input/Output Configuration

8.3 Twido Extreme Output Configuration

Subject of this Section
This section describes the output configuration for the Twido Extreme PLC.

What's in this Section?
This section contains the following topics:

Topic Page
Twido Extreme Discrete Output Configuration 195
Twido Extreme Pulse (PLS) Generator Output Configuration 198
Twido Extreme PWM Output Configuration in Standard Mode 205
Twido Extreme PWM Output Configuration in Hydraulic Mode 214
Twido Extreme Hydraulic PWM Output Configuration Example 222

194 35011386 05/2009



Twido Extreme Input/Output Configuration

Twido Extreme Discrete Output Configuration

Introduction
This section describes the configuration of discrete outputs.

Discrete Output
Discrete output is the only type of output for the Twido Extreme.

Discrete outputs may be standard discrete outputs or relate to function blocks (such
as PWM or PLS) or provide information concerning the PLC status (such an output
is limited to 50 mA). One output performs in reverse logic: a value of 1 relates to a
0 (or low) voltage and a value of 0 relates to a high voltage. This can be useful for
certain applications, such as relays.

Discrete Output Addresses
The following table shows the addresses assigned to Twido Extreme discrete

outputs:

DISCRETE OUTPUTS (total of 19)

Type Max Number Address Range
PLS/PWM 3 %Q0.0 - %Q0.2
Normal (1A)/PLC Status (limited to 50mA) | 1 %Q0.3

Normal (1A) 1 %Q0.4

Normal ( 300 mA) 13 %QO0.5 - %Q0.17
Reverse 1 %Q0.18

Note: %Q0.3 is the only address that can be used to provide PLC Status but alternatively this
address could be used as a Normal Discrete address.

35011386 05/2009 195



Twido Extreme Input/Output Configuration

Discrete Output Configuration

Discrete outputs used in the ladder/list program may be viewed and configured in
the Program — Configure — Configure the Hardware Module Configuration pane
of TwidoSuite.

Scrolling down in the Module Configuration Output tab lists the discrete outputs used
and available, as shown below:

Inputs | Qutputs | CAN J1839 ‘GANapen‘

Table of output

[T Use a 12 Vdc power supply to activate outputs %00.10 to %00.17

| Used | Address Symbol Status? Used By
%00.0

%001

%002

%00.3 O
%004

%00.5

%00.6

%00.7

%00.8

%00.9

%G0.10

%0011

%00.12

%0013

%00.14

Eli=lisl=li=li=li=li=i=l=i=isisi=i)

NOTE: In online mode, the output values are also displayed.
The first 3 outputs %Q0.0 - %Q0.2 are dedicated to PLS/PWM function blocks.

Outputs %Q0.3 - %Q0.17 are normal discrete outputs with different possible levels
of output current and protection.

Output %Q0.3 can be used to provide PLC status.

Output %Q0.18 is the reverse logic output (a value of 1 relates to a 0 (or low) voltage
and a value of O relates to a high voltage).

Outputs %Q0.10 to %Q0.17 are only available with a 12 V DC power supply and
when the 12 V DC power supply check box is selected. These outputs are not
available with 24 V DC.

196 35011386 05/2009



Twido Extreme Input/Output Configuration

Output Configuration Fields

The output configuration fields displayed in the above figure are detailed in the
following table. Some fields in this table are for display purposes only and cannot be

modified.

Field Possible Values Function

12V Power Check box selected or not. Selected if 12 V DC power supply is

Supply check | To activate 12 V DC power supply, select this check | used.

box box and a pop-up message informs you that outputs |If 12 V DC check box is selected, all

are %Q0.10 to %Q0.17 are now active. outputs are available.

To de-activate 12 V DC power supply, clear this If 12 V DC check box is cleared, power
check box and a pop-up message informs you that | supply is 24 V and %Q0.10 to %Q0.17
outputs are %Q0.10 to %Q0.17 are no longer active. | are not available.

Used Check box selected or not. For display purposes only. Displays
outputs used by the program.

Address Output Addresses %Q0.0-%Q0.18 Address of each discrete output.

Symbol User defined value: alphanumeric max 32 characters. | To provide name for the output. This field
can be edited. When applied, this name is
then displayed in the Ladder/List program.

Status Check box: selected or not Used to indicate PLC status.

This is applied by selecting and clicking Apply (or by If the PLC is in RUN, output is set to 1.
changing window in which case you will be asked if you | If the PLC is in STOP or has detected an
wish to apply changes). error, output is set to 0.

Used by user logic For display purposes only. Lists any
function blocks or program logic that uses
this output.

35011386 05/2009

197



Twido Extreme Input/Output Configuration

Twido Extreme Pulse (PLS) Generator Output Configuration

Introduction
This section describes the configuration of PLS output for the Twido Extreme PLC.

Pulse (PLS) Generator Output

PLS is a special function that has %Q0.0 - %Q0.2 as dedicated outputs on a
Twido Extreme PLC. A user-defined function block generates a pulse signal on
these outputs. This square signal has a constant (user-configurable) period P with
a constant (non-configurable) duty cycle. The duty cycle of the PLS generator is
factory-set to 50%(Ton / P).

lllustration of PLS duty cycle = 50%(Tqy / P):

Ton
L

E‘ ’ Configurable period P
P

Twido Extreme supports 3 PLS generators.

Dedicated PLS/PWM Outputs

The outputs %Q0.0 - %Q0.2 are dedicated to either a %PLS or a %PWM function
block. For example, creating the function block %PLS/ (/=0...2) automatically

assigns the output %Q0.; to this function block. Once this output has been used for
%PLSiit cannot be reused by a %PWMifunction block or elsewhere in the program.

198 35011386 05/2009



Twido Extreme Input/Output Configuration

%PLS Function Block
The figure below presents the ladder representation of a %PLS function block for the

Twido Extreme PLC.

%PL S0

— 1IN Ql—

TYPE DOIURLE
ADIY
%PLSi.P

0

A %PLS function block has several variables which are summarized in the following
table Configuring a %PLS Function Block (see page 201) describes how to

configure these variables.

The %PLSi (i= 0...2) function block has the following variables:

Object Description Possible values Write access

IN Enable function 0,1 N
If IN=1, the pulse generation is
produced at PLSi.Q
IF IN=0, PLSi.Q s set to 0

PLSi.R Resetto 0 0,1 N
If PLSi.R=1, outputs %PLS/.Q and
%PLSi.D are set to 0.

PLSi.Q Generation in program 0,1 N
If PLSi.Q=1, the pulse signal is
generated at the configured
dedicated output %QO.i.

PLSiD End of cycle 0,1 N
If PLSi.D=1, signal generation is
complete. The number of desired
pulses has been reached.

TYPE This defines the possible range for the Single or Double (word) Y

number of pulses that can be defined.

ADJUSTABLE This defines whether or not the preset Y/N Y

period value can be modified. Y enables modification of preset
value.

Note

1 The variable PLS/.N (or ND for double word) defines the total number of pulses desired. This must be defined in the

user’s ladder/list program using, for example, an operator block, as shown below in step 1.

35011386 05/2009

199




Twido Extreme Input/Output Configuration

Object Description Possible values Write access
PLSO0.P and Preset period Frequency range: 10...1000 Hz Y
PLS1.P (This is calculated from the user defined | which gives the following
Frequency in the configuration table.) Period range: 100...10 000 (in
10 ps).
PLS2.P Preset period Frequency range: 10...5000 Hz Y
(This is calculated from the user defined | which gives the following
Frequency in the configuration table.) Period range: 20...10 000 (in
10 ps).
PLS/N Total No. of pulses to be generated. 0<PLSiN<32767
PLS/ND? Total No. of pulses (double word format) | 0 < PLSi.ND < 4 294 967 295 Y
to be generated.
Note

' The variable PLSi.N (or ND for double word) defines the total number of pulses desired. This must be defined in the
user’s ladder/list program using, for example, an operator block, as shown below in step 1.

The following illustration shows a pulse diagram for the PLS function block.

Input IN —|

Number of pulses

Dedicated Output —l_l—l_l—l_l—l_l—l_l—l_l

LI L

L

[T

%PLSILQ J

L I
=

M

%PLSI.D

200

35011386 05/2009




Twido Extreme Input/Output Configuration

Configuring a %PLS Function Block
The following table shows you how to configure a %PLS function block.

Step

Action

1

Create a %PLSifunction block in the ladder/list editor (i = 0..2) Ladder Diagram
Blocks (see page 415).

Example: Ladder program with function block in section 2 and %PLSi.N
variable configured in section 1 (1).

Fugo | PLSON-<i0
SHORT %PLSON:=10
. |
D
Rung o
%E10.1 %PLS0 26CQ0 3
o —{m o {
ADJY
%C0.P
%101
‘77 R Dl

(1) The variable PLS/.N (or ND for double word) defines the total number of
pulses desired. This must be defined in the ladder/list program using, for
example, an operator block, as shown in step 1.

The default value is set to 0. To produce an unlimited number of pulses, set
%PLSI.N or %PLSi.ND to zero.

35011386 05/2009

201



Twido Extreme Input/Output Configuration

Step

Action

3

Example: The same example is shown below as a List program (1).

D
0

LD 1

1 [ %PLSO.N =10]
OV
0 BLK 9%PLS0
1 LD 9410.0.1
2 IN

3 LD 9%10.0.1
4 R

5 QOUT BLK

6 LD

7 ST %Q0.0.3
8 END BLK

(1) The variable PLS/.N (or ND for double word) defines the total number of
pulses desired. This must be defined in the ladder/list program using, for
example, an operator block, as shown in step 1.

The default value is set to 0. To produce an unlimited number of pulses, set
%PLSIi.N or %PLSi.ND to zero.

Open the PLS Configuration table (see page 204)
Result:

Define objects

Allocation Automatic A4 Murnber of objects o Affected: O Maxi: 3
Table

an = General Hydraulic | Inputs
| Used‘ Address ‘ Symbal | Apply Cancel
L

(] %PLST/%PWM1 Type PLS/PWM
(] %PLSZ/%PWMZ

Franquancy Perind

¢ Mot Used \ 100 He | 1000 x10pe

P=1/F ton=torr & %PLS
© %P

[ Double Ward
[ Adjustable

fon
—
OProgressive Hydraulic
forF
| - CIRelative Hydraulic
Dedi i Qutput
— s
[\l

%Q0.0 = Pulse Output

The %PLSi address that you previously defined for your function block in the
ladder editor will be displayed here (shown as selected in the Used check box).

You can define up to 3 %PLS function blocks.

202

35011386 05/2009




Twido Extreme Input/Output Configuration

Step

Action

Click the row in the left hand side pane that corresponds to the %PLSi that you
wish to configure. If you have already used the dedicated output QO./ elsewhere
in the program you will get an error message telling you that you cannot
configure this %PLS. In this case, return to your program and assign another
%PLS or %Q.

Only the General tab applies to %PLS function blocks. The other tabs (Hydraulic
and Inputs) relate only to %PWM function blocks and are not available for
%PLS.
In the right hand side pane (General tab),
e select Type %PLS
e enter a Frequency @
For %PLS0 and %PLS1 : Frequency 10 ... 1000 Hz => Period 100 ... 10 000
For %PLS2: Frequency 10 ... 5000 Hz => Period 20 ... 10 000
® select or clear Double word
® select or clear Adjustable

The number of pulses cannot be configured in this window.(")

(1) The variable PLSi.N (or ND for double word) defines the total number of
pulses desired. This must be defined in the ladder/list program using, for
example, an operator block, as shown in step 1.

@ Entering a frequency value that is outside the range will result in an error
message.

®) The period P (given in 10 ps) is calculated from the frequency value F that
you enter (P = 1/F). A frequency of 10 results in a period of 10 000; a frequency
of 1000 gives a period of 100.

To configure all other required PLS outputs (including those not yet used in the
program), repeat steps 3 and 4.

When selecting another %PLS you will be asked whether or not you wish to
apply changes, to which you reply "yes".

Click Apply (or change window and you will be asked whether or not you wish
to apply changes).

If you return to previous screen using the < button, previous windows are
displayed in their prior state.

35011386 05/2009

203




Twido Extreme Input/Output Configuration

Opening the %PLS Configuration Table
The table below shows you how to open the %PLS configuration table

Step Action
1 To open the %PLS configuration table from the Program window:
Double click the %PLS function block in the Ladder editor.
2 To open the %PLS configuration table from elsewhere In TwidoSuite:

1. Select Program — Configure — Configure the data
2. Select I/0 Objects from Object Categories
3. Select %PLS/%PWM from I/O Objects

204 35011386 05/2009



Twido Extreme Input/Output Configuration

Twido Extreme PWM Output Configuration in Standard Mode

Introduction

This section describes the configuration of PWM output in standard mode.

PWM Output

The PWM is a special function that can be assigned to an output. This rectangular
signal has a constant (user-configurable) period P with the possibility of varying the
pulse width Toy and thus the duty cycle (Toy / P).

lllustration of PWM duty cycle:

]4 -

Ton

I
I
ot

programmable width Ty

I
I
I
| configurable period P

-

PWM Output Addresses

You can configure up to 3 PWM outputs.
PWM is assigned to output %Q0.0 to %Q0.2:

PWM Address | Dedicated Output
%PWMO %Q0.0
%PWM1 %Q0.1
%PWM2 %Q0.2

The outputs %Q0.0 - %Q0.2 are dedicated to either a %PWM or a %PLS function
block. For example, creating the function block %PWMj (i=0...2) automatically

assigns the output %QO0.i to this function block. Once this output has been used for
%PWMiit cannot be reused by a %PLS/ function block or elsewhere in the program.

35011386 05/2009

205



Twido Extreme Input/Output Configuration

%PWM Function Block
The figure below presents the ladder representation of a %PWM function block for

the Twido Extreme PLC.

%PWMO

— IN
%PWMO.P
100

A %PWM function block has several variables which are summarized in the
following table Configuring a %PWM Function Block (see page 209) describes how
to configure these variables.

The %PWM; (i = 0...2) function block has the following variables:

Object Description Possible values Write
access
IN Enable function 0,1 N
If IN=1, the pulse generation is produced at the
configured dedicated output %Q0.i (i=0,1,2).
IF IN=0, the output channel is set to 0
%PWMi.R Duty cycle This value gives the percentage of the signal in Y
Modifying the % PWMi.R duty state 1 in a period P. The pulse width Ty is thus
cycle in the program modulates | equal to:
the width of the signal. Ton = P * (%PWMi.R/100).
(P is the period in 10 ps).
The default value is 0 and values greater than 100
are considered to be equal to 100.
For Q0.0 and Q0.1 the duty cycle values must be
between 5% and 95%.
For QO0.2, duty cycle values must be between 20%
and 80%.
%PWMi.R must be defined in the ladder/list
program using, for example, an operator block, as
shown below in step 1.
PWMO.P and Preset period Frequency range: 10...1000 Hz Y
PWM1.P (This is calculated from the user | which gives the following
defined Frequency in the Period range: 100...10 000 (in 10 ps).
configuration table.)
206 35011386 05/2009




Twido Extreme Input/Output Configuration

Object Description Possible values Write
access
PWM2.P Preset period Frequency range: 10...5000 Hz Y
(This is calculated from the user | which gives the following
defined Frequency in the Period range: 20...10 000 (in 10 ps).
configuration table.)
ADJUSTABLE | This defines whether or not the Y/N Y
preset period value can be Y enables modification of preset value.
modified.
35011386 05/2009 207




Twido Extreme Input/Output Configuration

PWM function block with varying duty cycles
The following illustration shows a pulse diagram for the PWM function block with

varying duty cycles.

Input IN _ L
80%
50%

Ratio 20% |

Dedicated oupst ML FLPLFLFLFFIEEL

In the following programming example, the signal width is modified by the program
according to the state of controller inputs %10.0 and %I0.1.

If %10.1 and %I0.2 are set to 0 and the %PWMO.R ratio is set at 20%, the duration

of the signal at state 1 is then: 20 % x 500 ms = 100 ms.

If %10.0 is set to 0, %I10.1 is set to 1 and the %PWMO.R ratio is set at 50%, the
duration is then 250 ms.

If %10.0 and %I0.1 are set to 1 and the %PWMO.R ratio is set at 80% (duration 400

ms).

Programming Example:

0sI0.0  %I0.1 %PWMO0.R:=20 LDN 0410.0.0
)] ANDN  %I0.0.1
! Il [%PWMO.R:=20]
%I0.0  %l0.1 %PWMO0.R:=50 LD %010.0.0
4{ [ /\ ANDN %10.0.1
| | [%PWMO0.R:=50]
%I0.0  %I0.1 %,PWMO0.R:=80 kll\)ID 3%88?
] 010.0.
— | N [%PWMO.R:=80]
%PWMO BLK %PWMO
%10.2 LD %10.0.2
IN
| IN END_BLK
%PWMOP

208

35011386 05/2009



Twido Extreme Input/Output Configuration

Configuring a %PWM Function Block
The following table shows you how to configure a %PWM function block.

Step Action

1 Create a %PWNM i function block in the ladder/list editor (/= 0..2) Ladder Diagram
Blocks (see page 415).

Example: Ladder program with function block in section 2 and duty cycle
%PWMO.R variable configured in section 1.

(1) LD
Aungo | SLPVWMO,A— 80 }_li
SHORT %LPWMO R'= 80
(2) Lp
Rung 0

|

%I04 SEPWIVIO

—
SoPWIIU. P
100

The same example is shown below as a List program:

)L

0 LD 1

1 [ %PWMO.R:= 80 |
OIS
0 BLK %PWMO

1 LD %10.0.1

2 IN

3 END BLK

35011386 05/2009 209



Twido Extreme Input/Output Configuration

Step Action
2 Open the PMW Configuration table (see page 211)
Result:
Tahle
Al ¥ General Hydraulic | Inputs
‘U;&d‘ Address | Symbal ‘ Apply Gancel
00 %PLS1%PWI Type PLS/PWM Frequenoy
O | %PLS2%PAM2 O Mot used \ Hz x10ps
ton=P+(RA00) C) %PLS o
@ %P )
[ Adjustable
B 0 ’7 o TProgressive Hydraulic
oN | OFF [IRelative Hydraulic
Dedi i Output
e %Q0.0 = Pulse Output
The %PWM/ address that you previously defined for your function block in the
ladder editor will be displayed here (shown as selected in the Used check box).
You can define up to 3 %PWM function blocks.PMW Output Configuration
describes these fields (see page 205).

3 Click the row in the left hand side pane that corresponds to the %PWMithat you
wish to configure. If you have already used the dedicated output QO./ elsewhere
in the program you will get an error message telling you that you cannot
configure this %PWM. In this case, return to your program and assign another
%PWM or %Q.

4 The General tab with PWM selected relates to %PWM output. The Hydraulic tab

relates to %PWM output in hydraulic mode (see page 214).

In the right hand side pane (General tab),

e select Type %PWM

e enter a Frequency () (
For %PLS0 and %PLS1 : Frequency 10 ... 1000 Hz => Period 100 ... 10 000
For %PLS2: Frequency 10 ... 5000 Hz => Period 20 ... 10 000

e select or clear Adjustable

e selecting Relative Hydraulic or Progressive Hydraulic enables the
hydraulic mode.

2)

The duty cycle cannot be configured in this window. This must be defined in the
ladder/list program using, for example, an operator block, as shown in step 1.
U] Entering a frequency value that is outside the range will result in an error
message.

@) The period P (given in 10 ps) is calculated from the frequency value F that

you enter (P=1/F). A frequency of 10 results in a period of 10 000; a frequency
of 1000 gives a period of 100.

210

35011386 05/2009




Twido Extreme Input/Output Configuration

Step

Action

To configure all other required PWM outputs (including those not yet used in the
program), repeat steps 3 and 4.

When selecting another %PWM you will be asked whether or not you wish to
apply changes, to which you reply "yes"

Click Apply (or change window and you will be asked whether or not you wish
to apply changes).

If you return to previous screen using the < button, previous windows are
displayed in their prior state.

Opening the %PWM Configurat

ion Table

The table below shows you how to open the %PWM configuration table

Step

Action

1

To open the %PWM configuration table from the Program window:
Double click the %PWM function block in the Ladder editor.

To open the %PWM configuration table from elsewhere In TwidoSuite:
1. Select Program — Configure — Configure the data

2. Select I/0 Objects from Object Categories

3. Select %PLS/%PWM from 1/0O Objects

PWM Output Configuration

PWM outputs can be viewed and configuredin Program — Configure — Configure

the Data —

I/0 Objects — %PLS/%PWM.

The PWM Configuration Table General tab is displayed below:

Table

All

= General Hydraulic ‘ Inputs |

i

| Used ‘ Address | Symbol | M m

O %PLS1/%PWhIT Type PLS/PWM
O %PLS2/%PWZ

Frequency
(" Mot used Hz x10ps
ton=P=(RAD) (" %PLS -
%Py
[ Adjustable

. T [ Progressive Hydraulic
OFF [ Relative Hydraulic
Dedi: | Output

F=1/F

—

%Q0.0 = Pulse Qutput

35011386 05/2009

211




Twido Extreme Input/Output Configuration

PWM Output General Tab Configuration Fields

The PWM Output configuration fields are described in the following table. As
indicated, certain fields in this table are for display purposes only (read-only) and

cannot be modified.

Field

Possible Values

Function

Filter Box

Drop-down list box with following options:
e All

e Used

e Unused

Enables you to view/hide the used/unused
objects.

Used

Check box selected or not.
Selected relates to used.
Cleared relates to unused.

For display purposes only. Displays PWM
outputs used by the program. This field cannot
be edited.

Address

PWM Output Addresses:
® %PWMO
® %PWM1
® %PWM2

Address of each PWM output.

Symbol

User defined value: alphanumeric max 32
characters.

To provide name for PWM output. This field
can be edited. When applied, this name is then
displayed in the Ladder/List program.

Type
PLS/PWM

3 options, to choose:
o Not Used

® %PLS

® %PWM

To choose PLS or PWM generation.

Frequency

User defined value in the following range:
® For %PLS0 and %PLS1 : 10 ... 1000 Hz in
standard mode.
For %PLS2: 10 ... 5000 Hz in standard mode.
® 50 Hz ... 400 Hz in hydraulic mode
(see page 214).

Frequency of the PWM output signal.

Period

Derived from the frequency (P=1/F).
Note: The period can be modified in the application
program by using the %PLSi.P parameter.

Period (in10 us) of the PWM output signal.

Adjustable

Check box selected or not

If selected, it is possible to modify the period via the
TwidoSuite program or Animation Tables Editor
using the %PLSi.P parameter.

If not selected it is not possible to modify the period
using the %PLSi.P parameter.

This defines whether or not the preset period
value can be modified.

Relative
Hydraulic
Progressive
Hydraulic

Check boxes (see Twido Extreme PWM Output
Configuration in Hydraulic Mode, page 214)

Note: Checking these boxes enables the Hydraulic
and Input tabs.

Enable/Disable the Hydraulic Mode.

212

35011386 05/2009




Twido Extreme Input/Output Configuration

Field Possible Values Function
Dedicated PWM dedicated output: Output dedicated to the PWM.
Output ® %Q0.0
e %Q0.1
® %Q0.2
Apply/Cancel | Click: To save or discard changes to TwidoSuite
e Apply to confirm and save changes project.
® Cancel to discard changes
Duty Cycle

You can set and modify the duty cycle (R) in the user program using the %PWMi.R

parameter.

For Q0.0 and QO0.1, duty cycle values must be between 5% and 95%.

For Q0.2, duty cycle values must be between 20% and 80%.

35011386 05/2009

213




Twido Extreme Input/Output Configuration

Twido Extreme PWM Output Configuration in Hydraulic Mode

Introduction
This section describes the configuration of the PWM output in hydraulic mode.

PWM Output in Hydraulic Mode

The PWM is a special function that can be assigned to an output. This rectangular
signal has a constant (user-configurable) period with the possibility of varying the
duty cycle. PWM output (see page 205) describes this in more detail.

PWM in hydraulic mode allows the Twido Extreme to control a hydraulic system.

PWM Output Addresses
You can configure up to 3 PWM outputs.
PWM is assigned to output %Q0.0 to %Q0.2:

PWM Address Dedicated Output
%PWMO %Q0.0
%PWM1 %Q0.1
%PWM2 %Q0.2

The outputs %Q0.0.0 - %Q0.0.2 are dedicated to either a %PWM or a %PLS
function block. For example, creating the function block %PWMj (i=0...2)
automatically assigns the output %Q0.i to this function block. Once this output has
been used for %PWMiit cannot be reused by a %PLS/ function block or elsewhere
in the program.

NOTE: In hydraulic mode, other discrete inputs and outputs can also be used. The
three outputs %Q0.0-%Q0.2, however are reserved for signal output for %PWMO-
%PWMZ2 and thus may not be reused.

214 35011386 05/2009



Twido Extreme Input/Output Configuration

PWM Output Hydraulic Tab Configuration

PWM outputs may be viewed and configured in Program — Configure — Configure
the Data — I/0 Objects — %PLS/%PWM — Hydraulic tab

Fields in the Hydraulic tab are only enabled if you first select PWM and Relative
Hydraulic or Progressive Hydraulic in the General tab displayed below:

Table
al v General Hydraulic ‘ Inputs |
| Used ‘ Address Symbaol | Apply Cancel
%
O  %PLS1/%PWHW1 Type PLS/PWM Fraquen cy
g 5
O  %PLSZ%PWM2 ' Not used e x10ps
ton=P=(RAD) (" %PLS -
@) %P
[ Adjustable
. , T [ Progressive Hydraulic
oN OFF [ Relative Hydraulic
Dedi: | Output

F=1/F

%Q0.0 = Pulse Qutput

The PWM Configuration Table, Hydraulic tab is displayed below:

Define objects

Allocation Automatic v Mumber of objects o Affected: 0 Maxi: 3
Table
il v General Hydraulic Input
‘ Used ‘ Address | Syrnbal | Apply Gancel
1 YPLE1/% P Command ___ Displacement
[ %PLS2MPWZ & Dither Slow ’7"'2 Frequency | Hz
PRI (" Ramp Fast Hz 1105
tou torF,
>
P=1/F

35011386 05/2009

215



Twido Extreme Input/Output Configuration

PWM Output Hydraulic Tab Configuration Fields
The PWM output hydraulic tab configuration fields are described in the following

table.
Field Possible Values Function
Command Choose one of the 2 following options: see Definition of Dither, page 216 and
e Dither Definition of Ramp, page 217
e Ramp

Displacement

Ramp mode: Set the value in the range [0 s...9 s] for:
® slow ramp
o fast ramp

Dither mode: Set the value in the range [2 Hz...400 Hz]
for:

® slow dither

e fast dither

To set the duration of the rising and the
falling of the ramp (ramp mode) or to set
the dither frequency (dither mode).

® Apply to confirm and save changes
e® Cancel to discard changes

Frequency/Per | User defined value in the following range: To modify the frequency value set in the

jod ® [50 Hz...400 Hz in hydraulic mode] General tab. The period is calculated
from the user entered frequency and
cannot be directly modified.

Apply/Cancel | Click: To save or discard changes to

TwidoSuite project

Definition of Dither

Stiction and hysteresis can make controlling a hydraulic valve seem erratic and

unpredictable:

e stiction can prevent the valve spool from moving when input signal changes are

small, and

e hysteresis can cause the spool shift to be different for the same command signal
input, depending on whether the change is increasing or decreasing

There are 2 definitions for dither:

e Inthe constant zone (see page 220), a rapid, small movement of the spool about
the desired position is intended to keep the spool moving to avoid stiction. This is
limited to a movement of 5% of the total displacement value around the desired
position.

e In arising or falling ramp (see page 220), the valve position changes frequency.
For example, for a dither with a frequency of 100 Hz, the valve changes its
position every 10 ms.

NOTE: Dither amplitude must be large enough and the frequency slow enough to

enable the spool to respond. The dither amplitude must not, however, be too large
and the frequency not too slow to not cause a resulting pulsation in the hydraulic
output.

216

35011386 05/2009



Twido Extreme Input/Output Configuration

Definition of Ramp

Ramps are used to slow down the response of a valve driver to a changing input
command. This results in a smooth transition when a rapid change of command
input signal occurs.

Ramps have no effect if the input signal change is slower than the ramp setting.

Ramps can be fixed or adjustable. For fast (or slow) settings the slope of the ramp
is the same for both rising and falling.

In Relative Hydraulic mode, Twido Extreme permits you to configure a total of four
ramps (2 slow/fast rising and 2 slow/fast falling ramps) with a PWM ratio varying

between 5% and 95% . Independent ramps will have separate ramp commands for
rising and falling (See below). You must set at least one rising and one falling ramp.

Symmetrical ramps have the same slope for rising and and falling. Independent
control of acceleration and deceleration can be achieved with separate ramp
commands for each ramp. If dual coil bi-directional valve drivers are used with four
potentiometers you can control 4 ramps (slow/fast rising and slow/fast falling).

In Progressive Hydraulic mode, Twido Extreme permits you to configure two
ramps (slow and fast) whilst defining a setpoint value that you wish the PWM ratio
to reach.

PWM Ramp Configuration

PWM ramps can be viewed and configured in Program — Configure — Configure
the Data — 1/0 Objects — %PLS/%PWM — Input tab.

The PWM Configuration Table, Input tab obtained after selecting Relative
Hydraulic mode in the General tab is displayed below:

Define objects

Automatic v Mumber of objects o Affected: 0 Maxi: 3

General Hydraulic Input
‘ Apply Cancel

Allocation

Tahle

Al ¥

| Used ‘
]
O %PLS1/%PYWhIT
[0 %PLEZ/%PWH2

Address

Symbal

ton=P=(RA00)

-

- Rising Current rafio Falling

= Slowe ‘ | Slow
W Fast Fast
35011386 05/2009 217



Twido Extreme Input/Output Configuration

The PWM Configuration Table, Input tab obtained after selecting Progressive
Hydraulic mode in the General tab is displayed below:

Define objects
Allocation Automatic A4 Mumber of objects o Affected: O Maxi: 3
Table
Al = General Hydraulic Input
‘ Used | Address ‘ Symbaol | Apply Cancel
] YPLS1/% Pyl
[0 %PLE2/%PYW2
lon=P+(RA00)
L | T Current ratio Setpoint
O OFF.
— >
P=1/F

PWM Ramp Input Tab Configuration Fields

The PWM ramp configuration fields are described in the following table. The Input
tab is available only if one of the hydraulic check boxes (Progressive or Relative) is
selected in the General tab. Entering addresses in these fields enables you to
specify four ramps.

Hydraulic Field Possible Values Function
mode
Relative Slow rising When the trigger is set to 1, the
ramp slow rising ramp transition
starts. The ratio increases
slowly from 5% to 95%.
Fast rising When the trigger is setto 1, the
ramp fast rising ramp transition

choose the trigger for the ramp:
® Memory bit %Mi (i=0...99)

Slow falling e Digital input %I0.j (j=0...19)
ramp e Digital output %QO0.k (k=0...18))

Fast falling
ramp

starts. The ratio increases
rapidly from 5% to 95%.

When the trigger is setto 1, the
slow falling ramp transition
starts. The ratio decreases
slowly from 95% to 5%.

When the trigger is setto 1, the
fast falling ramp transition
starts. The ratio decreases
rapidly from 95% to 5%.

Relative/Progr
essive

Current Ratio | ® %MWi (i=0...99)
® %QWCxyz(x=0or1;y=0..31;z=0...7)

Current value of the PWM ratio.

218

35011386 05/2009




Twido Extreme Input/Output Configuration

o Apply to confirm and save changes

® Cancel to discard changes

Hydraulic Field Possible Values Function
mode
Progressive Slow Ramp When the trigger is setto 1, the
slow ramp transition starts.
The ratio changes slowly from
choose the trigger for the ramp: the current ratio value to the
e Memory bit %Mi (i=0...99) setpoint value.
Fast Ramp e Digital input %I0./ (j=0...19) When the trigger is set to 1, the
e Digital output %Q0.k (k=0...18)) fast ramp transition starts. The
ratio changes rapidly from the
current ratio value to the
setpoint value.
Setpoint ® %IWO0j (/=0...8) Setpoint value that you wish
® %IWCxyz(x=0o0r1;y=0..31;z=0...7) ratio to reach.
® %MWi (i=0...99)
® %QWCxyz(x=0o0r1; y=0..31;z=0...7)
Apply/Cancel | Click: To save or discard changes to

TwidoSuite project.

Ramp Priority

Duty Cycle

In the event that both slow and fast triggers are set simultaneously for the same
ramp, the following defined order of prioirity exists to protect the valve:

fast falling
slow falling
slow rising
fast rising

You can set and modify the duty cycle(R) in the user (ladder or list) program using
the %PWMi.R parameter. For hydraulic applications, the duty cycle must lie in the
range: 5% < R < 95%.

For Q0.0 and QO0.1the duty cycle values must be between 5% and 95%.
For Q0.2, the duty cycle values must be between 20% and 80%.

35011386 05/2009

219




Twido Extreme Input/Output Configuration

Hydraulic PWM Output in Online Mode

In online mode you can monitor the state of the PWM output ramp from Program —
Debug — Monitor software configuration:

Define objects

Allocation Murnber of objects Affected: O Maxi: 3
Tahle
m = General Hydraulic | nput
‘ Used | Address Symbaol | Apply Cancel
[0 %PLS0/%PWhD
[ %PLS1/%PWIT Type PLS/PWM Frequen cy
[ %PLS2/%PW2 € Mot used ‘ 150 Hz x10ps
) %PLE
lon=F+(R100) " =]
& %PYYM
T Adjustable
- M Progressive Hydraulic
] LoFF [T Relative Hydraulic
Dedi i Output
9 =
(—>P=UF %Q0.0 = Pulse Output

©

>

There are 6 different states in the PWM signal in online mode, as shown below:

State State Online diagram
number
1 Dead zone
©
@ @
=
2 Fast rising ramp
transition ®
@
®
© ©
220

35011386 05/2009



Twido Extreme Input/Output Configuration

State
number

State Online diagram

Slow rising ramp

transition ,

of

i/@
O

Constant zone

Fast falling ramp

transition

Slow falling ramp

transition

Effect of Twido Extreme Operating Modes on PWM Outputs

Effect

The output is reset to its initial state and the

output signal is null.

The output restarts in the same state as is was
prior to the power cut.

System bit | Operating mode
state
%S0=1 Cold restart
%S1=1 Warm restart
%S9=1 PLC in STOP mode
or
Outputs reset in RUN mode

The outputs %Q0.0, %Q0.1 and %Q0.2 are set
to O regardless of the state of system bit %S8.

221

35011386 05/2009



Twido Extreme Input/Output Configuration

Twido Extreme Hydraulic PWM Output Configuration Example

Overview

This section explains how to configure PWM output in hydraulic mode through an
application example

Hydraulic PWM Output Configuration Process
Follow the steps below to configure the PWM output to control a hydraulic system:

Stage Description
1 Configure the PWM output General tab
2 Configure the PWM output Hydraulic tab
3 Configure the PWM output Input tab

PWM Output Configuration Window Access

You may access the output configuration window:

e either by double-clicking the PWM function block in a ladder program,

e or by selecting Program — Configure — Configure the Data — 1/O objects —
%PLS/%PWM

PWM Output General Tab Configuration
Configure PWM output General tab as follows:

Step Action

1 Select %PWM in the Type PLS/PWM field.

2 Set the frequency to 150 Hz
Result: The period in x10 ps is calculated from the frequency (P=1/F)

3 Select the one of the Hydraulic check boxes (Progressive or Relative) to enable
access to hydraulic and input tabs

4 Result:

General Hydraulic ‘ Input ‘
Apply Cancel

Type PLS/PWM Fraquency
C Mot used |15IJ Hz K10ps
© %PLS
@ Py

-
[ Adjustable
W Progressive Hvdraulic
[T Relative Hydraulic
Dedi i Qutput
%Q0.0 = Pulse Qutput

222 35011386 05/2009



Twido Extreme Input/Output Configuration

PWM Output Hydraulic Tab Configuration
Configure PWM output Hydraulic tab as follows:

Step Action

Select Ramp in the Command field.

Set the Slow Displacement to 6 s.

Set the Fast Displacement to 1 s.

If needed, modify the frequency previously set.

||| =

Result:

General Hydraulic Input

Apply Cancel
Command Displacement
{ Dither Slow 6 s Frequency |150 Hz
(= Ramp Fast 1 s w10ps

PWM Output Input Tab Configuration
Configure PWM output Input tab as follows:

Step Action

Set the slow rising ramp.

Set the fast rising ramp.

Set the slow falling ramp.

Set the fast falling ramp.

Set the current ratio (optional)

Click apply to save the changes in all tabs.

N|{o|loa| MW N =

Result:

General Hydraulic Input
Apply Cancel

35011386 05/2009 223




Twido Extreme Input/Output Configuration

224 35011386 05/2009



Installing the AS-Interface V2 bus

9

Subject of this Chapter
This chapter provides information on the software installation of the AS-Interface

Master module TWDNOI10M3 and its slaves.

What's in this Chapter?

This chapter contains the following topics:

Topic Page

Presentation of the AS-Interface V2 Bus 226
General Functional Description 227
Software Set up Principles 230
Description of the Configuration Screen for the AS-Interface Bus 232
Configuration of the AS-Interface Bus 234
Description of the AS-Interface Window in Online Mode 240
Modification of Slave Address 244
Updating the AS-Interface Bus Configuration in Online Mode 246
Automatic Addressing of an AS-Interface V2 Slave 250
How to insert a Slave Device into an Existing AS-Interface V2 Configuration 251
Automatic Configuration of a Replaced AS-Interface V2 Slave 252
Addressing I/Os Associated with Slave Devices Connected to the AS-Interface 253
V2 Bus

Programming and Diagnostics for the AS-Interface V2 Bus 255
AS-Interface V2 Bus Interface Module Operating Mode: 260

35011386 05/2009 225




Installing the AS-Interface bus

Presentation of the AS-Interface V2 Bus

Introduction

The AS-Interface Bus (Actuator Sensor-Interface) allows the interconnection on a
single cable of sensor devices/actuators at the lowest level of automation.

These sensors/actuators will be defined in the documentation as slave devices.

To implement the AS-Interface application you need to define the physical context
of the application into which it will integrated (expansion bus, supply, processor,
modules, AS-Interface slave devices connected to the bus) then ensure its software
implementation.

This second aspect will be carried out from the different TwidoSuite editors:

e either in local mode,
e orin online mode.

AS-Interface V2 Bus

The AS-interface Master module TWDNOI10MS3 includes the following
functionalities:

e M3 profile: This profile includes all the functionalities defined by the AS-Interface
V2 standard, but does not support the S7-4 analog profiles

o One AS-Interface channel per module

e Automatic addressing for the slave with the address 0

o Management of profiles and parameters

e Protection from polarity reversion on the bus inputs

The AS-Interface bus then allows:

e Up to 31 standard address and 62 extended address slaves
e Up to 248 inputs and 186 outputs

e Up to 7 analog slaves (Max of four I/0 per slave)

A cycle time of 10 ms maximum

A maximum of 2 AS-Interface Master modules can be connected to a Twido modular
controller, a TWDLCeA24DRF or a TWDLCee40DRFcompact controller.

226 35011386 05/2009



Installing the AS-Interface bus

General Functional Description

General Introduction

For the AS-Interface configuration, TwidoSuite software allows the user to:

e Manually configure the bus (declaration of slaves and assignment of addresses
on the bus)

e Adapt the configuration according to what is present on the bus

o Acknowledge the slave parameters

e Control bus status

For this reason, all data coming from or going to the AS-Interface Master are stored
in specific objects (words and bits).

AS-Interface Master Structure

The AS-Interface module includes data fields that allow you to manage the lists of
slaves and the images of input / output data. This information is stored in volatile
memory.

The figure below shows TWDNOI10M3 module architecture.

1 — I/O data
3 Parameters
] current AS-Interface bus
3 _| GConfiguration /
Identification
s
s
s I
.

35011386 05/2009

227



Installing the AS-Interface bus

Key:
Address | Item Description
1 1/0O data Images of 248 inputs and 186 outputs of AS-Interface
(IDI, ODI) V2 bus.
2 Current parameters Image of the parameters of all the slaves.
(PI, PP)
3 Configuration/ldentificati | This field contains all the I/O codes and the
on identification codes for all the slaves detected.
(CDI, PCD)
LDS List of all slaves detected on the bus.
LAS List of slaves activated on the bus.
LPS List of slaves provided on the bus and configured via
TwidoSuite.
7 LPF List of inoperative slaves.

Structure of Slave Devices

The standard address slaves each have:

e 4 input/output bits
e 4 parametering bits

The slaves with extended addresses each have:

e 4 input/output bits (the last bit is reserved for entry only)
e 3 parametering bits

Each slave has its own address, profile and sub-profile (defines variables
exchange).

The figure below shows the structure of an extended address slave:

(D3)‘/InpUt Bit Only

[/O data
DO
Parameters P2
PO

Configuration/
Identification

AS-Interface bus

Address

228

35011386 05/2009




Installing the AS-Interface bus

Key:
Addres | Iltem Description
s
1 Input/output | Input data is stored by the slave and made available for the

data AS-Interface master.

Output data is updated by the master module.
2 Parameters | The parameters are used to control and switch internal
operating modes to the sensor or the actuator.
3 Configuration | This field contains:

/Identification | ® the code which corresponds to I/O configuration,
o the slave identification (ID) code,
o the slave identification codes (ID1 and 1D2).

4 Address Physical address of slave.
Note: The operating parameters, address, configuration and identification data are saved
in a non-volatile memory.

35011386 05/2009 229



Installing the AS-Interface bus

Software Set up Principles

At a Glance

Set up Principle

To respect the philosophy adopted in TwidoSuite, the user should adopt a step-by-
step approach when creating an AS-Interface application.

The user must know how to functionally configure his AS-Interface bus
(see page 251).

The following table shows the different software implementation phases of the AS-
Interface bus.

Mode Phase Description
Local Declaration of module Choice of the slot for the AS-Interface Master
module TWDNOI10M3 on the expansion bus.
Configuration of the Choice of "master" modes.
module channel
Declaration of slave Selection for each device:
devices o of its slot number on the bus,
e of the type of standard or extended address
slave.
Confirmation of Confirmation at slave level.
configuration parameters
Global confirmation of Confirmation of application level.
the application
Local or Symbolization (optional) | Symbolization of the variables associated with the
connected slave devices.
Programming Programming the AS-Interface V2 function.
Connected | Transfer Transfer of the application to the PLC.
Debugging Debugging the application with the help of:

e the AS-Interface Window used on the one hand
to display slaves (address, parameters), and on
the other, to assign them the desired addresses

e diagnostic screens allowing identification of
errors.

NOTE: The declaration and deletion of the AS-Interface Master module on the
expansion bus is the same as for another expansion module. However, once two
AS-Interface Master modules have been declared on the expansion bus,
TwidoSuite will not permit another one to be declared.

230

35011386 05/2009




Installing the AS-Interface bus

Precautions Prior to Connection

Before connecting (via the software) the PC to the controller and to avoid any
detection problem:

e Ensure that no slave is physically present on the bus with address 0
e Ensure that 2 slaves are not physically present with the same address.

35011386 05/2009 231



Installing the AS-Interface bus

Description of the Configuration Screen for the AS-Interface Bus

At a Glance

The configuration screen of the AS-Interface master module gives access to the
parameters associated with the module and the slave devices.

It can be used to display and modify parameters in offline mode.

NOTE: In order to access to the AS-Interface master module configuration screen :
double click on the AS-Interface master module, or go to program\ configure\
configure the hardware page and click on AS-Interface master module.

Illustration of Offline Mode

lllustration of the configuration screen in offline mode:

Description of the module Reference num ‘TWDNOI1[IM3 Address |1 | %
Description AS-nterface Master expanzion module (B0mA) = 1
Module configuration.
Std slaves! Staves/B =
00 J
Slave 14 01 Slave 144 MName [ Slave 14
gj ASIZOMTAIE Permanent caracteristics
04 Prefile 171D |F 1D [F ID4|F D2 |F
OSMINOUT24/12 Commeant |Commem
06
WHARE 07 Permanent j
03 {* Bits 0 [v |Parameter 1 2z [ [Parameter2
09
o (" Desimal 1 [v |Parameter 2 3 [v |Parameter4
11 Inputs / Outputs
12 Input Address Symbol Output  Address Symbol
13
14
15
16
17 Master mode
18 Activate data exchange [ Metwerk down
19
20 j [+ Automatic addressing

[

232

35011386 05/2009



Installing the AS-Interface bus

Description of the Screen in Offline Mode
This screen groups all data making up the bus in three blocks of information:

Blocks

Description

AS-interface configuration

Bus image desired by the user: view of standard and extended
address setting slaves expected on the bus. Move the cursor
down the vertical bar to access the following addresses.
Inaccessible addresses correspond to addresses not available
here for slave configuration. If, for example, a new standard
address setting slave is declared with the address 1A, the
address 1B is automatically made inaccessible.

Slave xxA/B

Configuration of the selected slave:

® Characteristics: 10 code, ID code, ID1 and ID2 codes
(profiles), and comments on the slave,

® Parameters: list of parameters (modifiable), in binary (4
check boxes) or decimal (1 check box) form, at the discretion
of the user,

e Inputs/Outputs: list of available 1/Os and their respective
addresses.

Master mode

Activation or deactivation is possible for the two functionalities
available for this AS-Interface module (for example, automatic
addressing).

"Network down" allows you to force the AS-Interface bus to
enter the offline mode.

"Automatic addressing" mode is checked by default.

Note: The "Data exchange activation" function is not yet
available.

The screen also includes 2 buttons:

Buttons Description

Apply Saves the AS-Interface Bus current configuration data.
The configuration can then be transferred to the Twido
controller.

Cancel Discard all changes in progress.

NOTE: Changes in the configuration screen can only be made in offline mode.

35011386 05/2009

233




Installing the AS-Interface bus

Configuration of the AS-Interface Bus

Introduction
AS-Interface bus configuration takes place in the configuration screen in local mode.

Once the AS-Interface Master and the master modes have been selected,
configuration of the AS-Interface bus consists of configuring the slave devices.

Procedure for Declaring and Configuring a Slave
Procedure for creating or modifying a slave on the AS-Interface V2 bus:

Step Action

1 Select the desired address cell (from those available) in the bus image:

Module Configuration

XVBC21A 01

03 ASIZOMTAIE

ey
[}
=

05 INOUTZ24/12

WXA3E o7

234 35011386 05/2009



Installing the AS-Interface bus

Step Action
2 In the slave configuration screen, enter or modify:
e the name of the new profile (limited to 13 characters),
® acomment (optional).
Or click Insert from catalog button @ in the function quick access bar and
select a slave from the pre-configured AS-Interface profile family.
lllustration of a Configuration Screen for a slave:
_ Apply | Gancel |
Slave 174 Mame: | Slave aa
Permanent i
Profile 140 [F 1D [F 121[F 1o2[F
Comment |Comment
Permanent j
(¥ Bits 0 [v [Parameter 1 2 [v |Parameter 2
(" Lecimal 1 [ [Paramaterz 3 [ [Paramaterd
Inputs / Qutputs
Input Address Symbol Cutput Address Symbol
Master mode
Mctivate data exchange [ Metwork down
[+ Autematic addressing
Note:
® For a new slave, a new screen for configuring the slave is displayed, the
"Address" field shows the selected address, the "Profile” fields are set to F
by default and all other fields in the screen are blank
e For a modification, the slave configuration screen is displayed with fields
containing the values previously defined for the selected slave
3 Enter:
e the IO code (corresponds to the input/output configuration),
e the ID code (identifier), (plus ID1 and for an extended type).
Note:
The "Inputs" and "Outputs" fields show the number of input and output
channels. They are automatically implemented when the IO code is entered.
4 For each parameter define:

e the system's acknowledgement (box checked in "Bits" view, or decimal
value between 0 and 15 in "Decimal” view),

® aname that is more meaningful than "Parameter X" (optional).

Note:

The selected parameters are the image of permanent parameters to be

provided to the AS-Interface Master.

35011386 05/2009

235



Installing the AS-Interface bus

Step Action

5 If needed, modify "Address" (within the limit of available addresses on the bus),
by clicking the up/down arrows to the left of the address (access is then given
to authorized addresses) or by entering the address using the keyboard.

6 Confirm the slave configuration by clicking on the Apply button.

The result is the check that:

e the IO and ID are authorized,

e the slave address is authorized (if keyboard entry is used) according to the
ID code ("bank" /B slaves are only available if the ID code is equal to A).

If a detected error occurs, an error message warns the user (for example: "The
slave cannot have this address") and the screen is displayed again with the
initial values (in the profile or address, depending on the condition itself).

NOTE: The software limits the number of analog slave declarations to 7.

NOTE: About the Schneider AS-Interface catalog: when you click Insert from
catalog, you can create and configure slaves in "Private family" (other than those in
the Schneider AS-Interface catalog.

236 35011386 05/2009



Installing the AS-Interface bus

AS-Interface Catalog

The Insert from catalog button @ can be used to facilitate configuration of

slaves on the bus. When you use a slave from the Schneider products family, use
this button to simplify and speed up configuration.

NOTE: An AS-Interface slave can be added by clicking on the Insert to catalog

button @

Clicking on Insert from catalog opens the following pane:

35011386 05/2009

AS-Interface profile family J‘
| 6: Nurninated indicator banks ¥ _insen n
AS-Interface Catalog: lluminated indicator banks
Reference XWBC21 4
std llluminated ind b A adaptat Loril led indicator bank
7 FEF xvBC21B std | lluminatedt indicator bank XVB Wéi@&;ﬂg_ﬁ‘ o fumInalea NAGEIor banks
This adaptator must be the lowest unit on the stack
Wersion:
Supplier Telemecanique
AS-i Profil 7 FFF
10 Configuration
Inputs
00: Status unit 1 : 1 ="0OK", 0 ="NOK"
D1: Stalus unit2 - 1 = "COK", 0 = "NOK"
D2: Stalug unit3: 1 ="CK", 0 = "NOK"
03 Statug unit4 - 1 ="OK", 0 ="NOK"
Outputs
Fallback = 0 by watchdog
00 Unit1:"0f =0/"0n" =1 ﬂ
D1 Unit2:"0f =0/"0n" =1 i
237



Installing the AS-Interface bus

The drop-down menu gives you access to all product families of the Schneider AS-
Interface catalog:

AS-Interface profile family.

5. Keyboards Insert
&1 rds

6 umirated! Indicator banks Reference XVEC214
7 Comnand and signaling
4: Mator-starters

117 Inductive sensors

9: Photofranic sensors

1 Priwate famiy

1%: Compact P20 interfaces
12: Telefast IP20 inerfaces Version:

=

ASH adaptator unit for iluminated indicator banks
KB = MAXIMO
This adaptator must be the lowest unit on the stack.

SupplierTel que

ASH Profil7 FFF

110 Configuration

Inputs:

D0: Status unit1: 1 ="0K", 0 = "NOK"
D1: Status unit2 1 ="0K", 0 = "NOK"
D2: Status unit3: 1 = "0K", 0 = "NOK"
D3: Status unit4 . 1 ="0K", 0 = "NOK"

Outputs:

Fallback = 0 by watchdog
Do: Unit1 - "Of* =0/ "0n"
D1 Unit2: "Of* =0/ "On"
D2 Unit3:"0f" =0/ "0n"

D3: Unit4: "Of* =0/ "0n" ﬂ
4
After you have selected a product, the list of corresponding slaves appears. Click on

the required slave and validate by clicking "Insert"
NOTE:

e Click the product name in the AS-Interface catalog to display its characteristics in
the right pane.

e You can add and configure slaves that are not part of the Schneider catalog.
Simply select the private family and configure the new slave.

238 35011386 05/2009



Installing the AS-Interface bus

Shortcut menu

When you right click, a shortcut menu appears:

Module Configuration

Sid SlavesiA Slaves/B

XVBC21A oi

03 ASZOMT4IE

Gut 05 INOUT2412

Gopy 05

———| Peste
[ a7

Delete

The shorcut menu is used to:
Cut (Ctrl+X)

Copy (Ctrl+C)

Paste (Ctrl+V)

Delete (Del)

35011386 05/2009

239



Installing the AS-Interface bus

Description of the AS-Interface Window in Online Mode

At a Glance

When the PC is connected to the controller (after uploading the application to the
controller), the AS-Interface Window displays online features.

In online mode, the AS-Interface Window dynamically provides an image of the
physical bus that includes the:

e List of expected slaves (entered) during configuration with their name, and the list
of detected slaves (with unknown names, but otherwise expected),

e Status of the AS-Interface module and the slave devices,

e Image of the profile, parameters and input/output values of the selected slaves.

It also enables the user:

To obtain diagnostics of the slaves on which an error is detected (see page 243),
To modify the address of a slave in online mode (see page 244),

To transmit the image of the slaves to the configuration screen (see page 246),
To address all the slaves with the desired addresses (during the first debugging).

240 35011386 05/2009



Installing the AS-Interface bus

lllustration of the AS-Interface Window
The illustration of the AS-Interface Window (in online mode only) looks like this:

Description of the module Reference num |TWDNO|1|]M3 Address 1 44| pp

Description AS-nterface Master expansion module (B0rmA) J i
Module configuration.
Std slaves/ Slaves /B = | ‘
00 J
Sl 1A & Slave 14 Name ‘ Slave 14
02

Permanent caracteristics

03 ASI20MT4IE

04 Prafile 110 | F [n] F I | F 02 | F

[ l INOUT24/12

Cormment ‘ Cornrnent
06
WXA3E o7 Permanent parameters
s (: Bits (4] v |F’arameler1 2 v |F'arameler3
09
10 F Decimal 1 v |Parameter2 2  |Parameter4
11 Inputs / Qutputs
12 Unknown
I Input Address Symbol Qutput Address Symbol
13
14
15
16
17 Master mode
1z
19 |

20 LI

Configuration OK Auto addressing possible Slaves at Adr 0 Detected ASI PWR Supply Cut
Slaves OK OMN Protected Mode Auto Addressing Active Of | Network Down

[pw| |4

35011386 05/2009 241



Installing the AS-Interface bus

Description of the AS-Interface Window

The AS-Interface Window provides the same information as the configuration
screen (see page 233).

The differences are listed in the following table:

Schedule Description
AS-interface V2 | Image of the physical bus.
configuration Includes slave status:
e Green indicator lamp: the slave with this address is active.
e Red indicator lamp: an error is detected on the slave at this
address, and the message informs you of the error type in
the "Error on the network" window.
Slave xxA/B Image of the configuration of the selected slave:

® Characteristics: image of the profile detected (unavailable,
non-modifiable),

® Parameters: image of the parameters detected. The user
can select only the parameter display format,

e Inputs/Outputs: the input/output values detected are
displayed,non-modifiable.

Error on the
network

Informs you of the detected error type, if an error is detected on
the selected slave.

AS-Interface
Bus

Information resulting from an implicit "Read Status" command.

® Shows bus status: for example, "Configuration OK = OFF"
indicates that the configuration specified by the user does
not correspond to the physical configuration of the bus,

® Shows the authorized functionalities for the AS-Interface
Master module: for example, "Automatic addressing active
= ON" indicates that the automatic addressing Master mode
is authorized.

242

35011386 05/2009



Installing the AS-Interface bus

Displaying Slave Status

When the indicator lamp associated with an address is red, there is an error
detected on the slave associated with this address. The "Error on the network"
window then provides the diagnostics of the selected slave.

Description of errors:

e The profile specified by the user by the configuration of a given address does not
correspond to the actual profile detected for this address on the bus (diagnostics:
"Profile error"),

e A new slave, not specified at configuration, is detected on the bus: a red indicator
lamp is then displayed for this address and the slave name displayed is
"Unknown" (diagnostics: "Slave not projected"),

e Peripheral inoperative, if the slave detected supports it (diagnostics: "Peripheral
inoperative"),

e A configured profile is specified but no slave is detected for this address on the
bus (diagnostics: "Slave not detected").

35011386 05/2009

243



Installing the AS-Interface bus

Modification of Slave Address

At a Glance
From the AS-Interface Window, the user can modify the address of a slave in online
mode.

Modification of Slave Address

The following table shows the procedure for modifying a slave address:

Step Description

1 Access the AS-Interface Window.

Select a slave in the "AS-interface V2 Configuration" zone.

3 Drag and drop the slave to the cell corresponding to the desired address.
lllustration: Dragging and dropping slave 3B to address 15B

Module configuration.

Std slaves/ Slaves /B ;I
00 J
Slave 14 ol
02
=3 AS

05 l INOUTZ4/12

.3
WKASE o7
0F
°° AL BOMTA1E
10
11 IUmknowm
12
13
14
15
16
17
18
19
» K

244 35011386 05/2009



Installing the AS-Interface bus

Step Description

Result:
All the slave parameters are automatically checked to see if the operation is possible.
lllustration of result:

Module configuration.

Std slaves/ Slaves /B d
R [
XVBC21A o1
02

o AsizomMT4IE
05 I\NOUT24/12

WWIARE a7

1 l Unknown

15 l Unknown

= =
After performing this operation, the diagnostics for the slave at address 3B indicate "slave
not detected" meaning that the slave expected at this address is no longer there. By

selecting the address 15B, the profile and the parameters of the moved slave can be re-
located, but the name of the slave remains unknown as it was not expected at this address.

NOTE: The profile and parameters of a slave are not associated with a name.
Several slaves with different names can have the same profiles and parameters.

35011386 05/2009 245



Installing the AS-Interface bus

Updating the AS-Interface Bus Configuration in Online Mode

At a Glance

In online mode, no modification of the configuration screen is authorized and the
physical configuration and software configuration can be different. Any difference in
profile or parameters for a configured or non-configured slave can be taken into
account in the configuration screen; in fact, it is possible to transmit any modification
to the configuration screen before transferring the new application to the controller.

The procedure to follow in order to take the physical configuration into account is the
following:

Step Description

1 Transfer of the desired slave configuration to the configuration screen.
2 Acceptance of the configuration in the configuration screen.

3 Confirmation of the new configuration.

4 Transfer of the application to the module.

Transfer of a Slave Image to the Configuration Screen.

In the case when a slave that is not specified in the configuration is detected on the
bus, an "Unknown" slave appears in the "AS-interface V2 Configuration zone" of the
AS-Interface window for the detected address.

The following table describes the procedure for transferring the image of the
"Unknown" slave to the configuration screen:

Step Description
1 Access the AS-Interface window.
2 Select the desired slave in the "AS-interface V2 Configuration" zone.

246

35011386 05/2009



Installing the AS-Interface bus

Step Description
3 Right click on the mouse to select "Transfer Conf".
lllustration:
Module configuration.
Std slaves/ Slaves /B ﬂ
()
KWBG21A a1
0z
a3 ASIzOMT4IE
04
o5 l\NDUT24/12
0
WrAG a7
08
a9
10
11 Unknown
12 % Transfer Gorf
13
14
15 l Unknown
6
17
15
19
20 j
Result:
The image of the selected slave (image of the profile and parameters) is then
transferred to the configuration screen.
4 Repeat the operation for each of the slaves whose image you would like to

transfer to the configuration screen.

35011386 05/2009

247



Installing the AS-Interface bus

Return to the Configuration Screen

When the user returns to the configuration screen, all the new slaves (unexpected)
which have been transferred are visible.

lllustration of the configuration screen following the transfer of all slaves:

Module configuration.

St slaves/ Slaves /B ;I
w [T
KWBG21A ol
02

3 ASIZOMT4IE
05 X INOUT24/12

WiHA2E o7

11 | Unknown

15 | Unknown

* El

Key:

e The cross signifies that there are differences between the image of the profile of
the transferred slave, and the profile initially desired in the configuration screen.

e The exclamation mark signifies that a new profile was added to the configuration
screen.

Explanation:

The configuration screen always shows the permanent image of the desired
configuration (this is why the slave is still present as 3B in spite of the change of
address (see page 244)), completed by the current image of the bus.

The profiles and parameters of the expected slaves displayed correspond to those
which were expected. The profiles and parameters of the unknown slaves displayed
correspond to the images of those detected.

Procedure for Transferring the Definitive Application to the Module

Before transferring a new application to the module, the user can, for each slave,
accept the detected profile and parameters (transferred to the configuration screen)
or modify the configuration "manually” (see page 234).

248 35011386 05/2009



Installing the AS-Interface bus

The following table describes the steps to follow to confirm and transfer the definitive
configuration to the module:

Step Action
1 Via the software, disconnect the PC from the module.
Note:

No modification can be carried out in the configuration screen if the PC is
connected to the module.

Right click on the desired slave.

2 choices:
® Select "Accept Conf" to accept the detected profile of the selected slave.

Illustration:

Module configuration.

Std slaves/ Slaves /B j
00 J
HVBG21A o1
oz
03 ASIZ0MT4IE

o5 X INﬁu‘rzmz

WRAZG 07 G
os Gopy
0o Paste
10 Delste
no v
12
13
14
15 1 Unknown
T
17
13
19
20 LH

For each of the slaves marked with a cross, a message will warn the user that

this operation will overwrite the initial profile (displayed on-screen) of the slave.

e Select the other choices in the right click menu to configure the selected
slave manually.

Repeat the operation for each of the desired slaves in the configuration.

Press the "OK" button to confirm and create the new application.
Result: Automatic return to the main screen.

6 Transfer the application to the module.

35011386 05/2009 249



Installing the AS-Interface bus

Automatic Addressing of an AS-Interface V2 Slave

At a Glance

Procedure

Each slave on the AS-Interface bus must be assigned (via configuration) a unique
physical address. This must be the same as the one declared in TwidoSuite.

TwidoSuite software offers an automatic slave addressing utility so that an AS-
Interface console does not have to be used.

The automatic addressing utility is used for:

e replacing an inoperative slave,
e inserting a new slave.

The table below shows the procedure for setting the Automatic addressing

parameter.

Step

Action

1

Access the AS-Interface V2 master module’s configuration screen.

2

Click on the Automatic addressing check box found in the Master mode
zone.

Result: The Automatic addressing utility will be activated (box checked) or
disabled (box not checked.

Note: By default, the Automatic addressing parameter has been selected in
the configuration screen.

250

35011386 05/2009



Installing the AS-Interface bus

How to insert a Slave Device into an Existing AS-Interface V2 Configuration

At a Glance

Itis possible to insert a device into an existing AS-Interface V2 configuration without
having to use the pocket programmer.

This operation is possible once:

the Automatic addressing utility of configuration mode is active (see page 250),
a single slave is absent in the physical configuration,

the slave which is to be inserted is specified in the configuration screen,

the slave has the profile expected by the configuration,

the slave has the address 0 (A).

The AS-Interface V2 module will therefore automatically assign to the slave the
value predefined in the configuration.

Procedure

The following table shows the procedure for making the automatic insertion of a new
slave effective.

Step Action

1 Add the new slave in the configuration screen in local mode.

2 Carry out a configuration transfer to the PLC in connected mode.

3 Physically link the new slave with address 0 (A) to the AS-Interface V2 bus.

NOTE: An application can be modified by carrying out the above manipulation as
many times as necessary.

35011386 05/2009 251



Installing the AS-Interface bus

Automatic Configuration of a Replaced AS-Interface V2 Slave

Principle

When a slave has been declared inoperative, it can be automatically replaced with
a slave of the same type.

This happens without the AS-Interface V2 bus having to stop, and without requiring
any manipulation since the configuration mode's Automatic addressing utility is
active (see page 250).

Two options are available:

o The replacement slave is programmed with the same address using the pocket
programmer, and has the same profile and sub-profile as the inoperative slave. It
is thus automatically inserted into the list of detected slaves (LDS) and into the
list of active slaves (LAS),

e The replacement slave is blank (address 0 (A), new slave) and has the same
profile as the inoperative slave. It will automatically assume the address of the
replaced slave, and will then be inserted into the list of detected slaves (LDS) and
the list of active slaves (LAS).

252

35011386 05/2009



Installing the AS-Interface bus

Addressing I1/0s Associated with Slave Devices Connected to the AS-Interface

V2 Bus

At a Glance

lllustration

°/°
‘Symbol ‘

Specific Values

This page presents the details relating to the addressing of discrete or analog I/Os
of slave devices.

To avoid confusion with Remote 1/Os, new symbols are available with an AS-
Interface syntax: %IA for example.

Reminder of the principles of addressing:

A, QA IWA QWA X g n . i
Type of object Expansion ‘ ‘ slave ‘ Channel
module address no
address

The table below gives specific values to AS-Interface V2 slave objects:

Part Values Comment

1A - Image of the physical discrete input of the
slave.

QA - Image of the physical discrete output of
the slave.

IWA - Image of the physical analog input of the
slave.

QWA - Image of the physical analog output of the
slave.

X 1to7 Address of AS-Interface module on the
expansion bus.

n 0A to 31B Slot 0 cannot be configured.

i 0to3 -

35011386 05/2009

253



Installing the AS-Interface bus

Examples
The table below shows some examples of /O addressing:

1/0 object Description

%IWA4.1A.0 Analog input 0 of slave 1A of the AS-Interface module situated in
position 4 on the expansion bus.

%QA2.5B.1 Discrete output 1 of slave 5B of the AS-Interface module situated
in position 2 on the expansion bus.

%IA1.12A.2 Discrete input 2 of slave 12A of the AS-Interface module situated
in position 1 on the expansion bus.

Implicit Exchanges

The objects described below are exchanged implicitly, in other words they are
exchanged automatically on each PLC cycle.

254 35011386 05/2009



Installing the AS-Interface bus

Programming and Diagnostics for the AS-Interface V2 Bus

Explicit Exchanges

Objects (words and bits) associated with the AS-Interface bus contribute data (for
example: bus operation, slave status, etc.) and additional commands to carry out
advanced programming of the AS-Interface function.

These objects are exchanged explicitly between the Twido controller and the AS-
Interface Master by the expansion bus:

e At the request of the program user by way of the instruction: ASI_CMD (see
"Presentation of the ASI_CMD" instruction below)
e Via the AS-Interface window or the animation table.

Reserved Specific System Words

System words reserved in the Twido controller for the AS-Interface Master modules
enable you to determine the status of the network: %SW?73 is reserved for the first
AS-Interface expansion module, and %SW74 for the second. Only the first 5 bits of
these words are used; they are read-only.

The following table shows the bits used:

System Bit Description
Words
0 system status ( = 1 if configuration OK, otherwise 0)
%SW73 1 data exchange ( = 1 data exchange is enabled, 0 if in mode Data
and Exchange Off (see page 260))
%SW74 . : .
2 system stopped ( = 1 if the Offline (see page 260) mode is enabled,
otherwise 0)

ASI_CMD instruction terminated ( = 1 if terminated, 0 if in progress)

ASI_CMD error instruction ( = 1 if there is an error in the instruction,
otherwise 0)

Example of use (for the first AS-Interface expansion module):

Before using an ASI_CMD instruction, the %SW73:X3 bit must be checked to see
whether an instruction is not in progress: check that %SW73:X3 = 1.

To ascertain whether the instruction has then correctly executed, check that the
%SW73:X4 bit equals 0.

Presentation of the ASI_CMD Instruction

For each user program, the ASI_CMD instruction allows the user to program his
network and obtain the slave diagnostics. The instruction parameters are passed by
internal words (memory words) %MWXx.

35011386 05/2009

255




Installing the AS-Interface bus

The syntax of the instruction is as follows:
ASI_CMD n %MW x: 1

Legend:

Symbol Description

n Address of AS-Interface expansion module (1 to 7).

X Number of the first internal word (memory word) passed in parameter.

Length of the instruction in number of words (2).

Using the ASI_CMD Instruction

The following table describes the action of the ASI_CMD instruction according to the
value of the parameters %MW(x), and %MW(x+1) when necessary. For slave
diagnostics requests, the result is returned in %MW/(x+1).

%MWx %MWx+1 Action

1 0 Exits Offline mode.

1 1 Switches to Offline mode.

2 0 Prohibits the exchange of data between the Master and its slaves
(enters Data Exchange Off mode).

2 1 Authorizes the exchange of data between the Master and its
slaves (exits Data Exchange Off mode).

Reserved -
Result Reads the list of active slaves (LAS table) with addresses from OA

to 15A (1 bit per slave).

5 Result Reads the list of active slaves (LAS table) with addresses from
16A to 31A (1 bit per slave).

6 Result Reads the list of active slaves (LAS table) with addresses from 0B
to 15B (1 bit per slave).

7 Result Reads the list of active slaves (LAS table) with addresses from
16B to 31B (1 bit per slave).

8 Result Reads the list of detected slaves (LDS table) with addresses from
0A to 15A (1 bit per slave).

9 Result Reads the list of detected slaves (LDS table) with addresses from
16A to 31A (1 bit per slave).

10 Result Reads the list of detected slaves (LDS table) with addresses from
0B to 15B (1 bit per slave).

11 Result Reads the list of detected slaves (LDS table) with addresses from
16B to 31B (1 bit per slave).

12 Result Reads the list of peripheral faults on slaves (LPF table) with

addresses 0A to 15A (1 bit per slave).

256

35011386 05/2009




Installing the AS-Interface bus

%MWx

%MWx+1

Action

13

Result

Reads the list of peripheral faults on slaves (LPF table) with
addresses 16A to 31A (1 bit per slave).

14

Result

Reads the list of peripheral faults on slaves (LPF table) with
addresses 0B to 15B (1 bit per slave).

15

Result

Reads the list of peripheral faults on slaves (LPF table) with
addresses 16B to 31B (1 bit per slave).

16

Result

Reads bus status.
See the results details in the next paragraph.

32

Param

Writes a new parameter in an AS-Interface slave (Pl table).

Param:

® Byte 0: New parameter to write — 0 to 15

o Byte 1: Address - 0 to 31 (for 0A to 31A) and 100 to 131 (for 0B
to 31B)

33

Param

Reads a parameter on an AS-Interface slave (PI table).

Param:

® Byte 0: New parameter to write — 0 to 15

® Byte 1: Address - 0 to 31 (for 0A to 31A) and 100 to 131 (for OB
to 31B)

NOTE: Bus status is updated on each PLC scan.. But the result of the ASI_CMD bus
reading instruction is available only at the end if the following PLC scan.

Details of the results of the ASI_CMD instruction to read bus status

In the case when bus status is read by the ASI_CMD instruction (value of the %MWx
parameter is equal to 16), the format of the result in the %MWx+1 word is as follows:

Yo MWx+1

Designation (1=0K, 0=NOK)

least significant

bit 0 Configuration OK

bit 1 LDS.0 (slave present with address 0)
bit 2 Auto addressing active

bit 3 Auto addressing available

bit 4 Configuration Mode active

bit 5 Normal operation active

bit 6 APF (power supply problem)

bit 7 Offline ready

35011386 05/2009

257




Installing the AS-Interface bus

%MWx+1

Designation (1=0K, 0=NOK)

most significant

bit 0 Peripheral OK

bit 1 Data exchange active

bit 2 Offline Mode

bit 3 Normal mode (1)

bit 4 Communication interruption with the AS-Interface Master
bit 5 ASI_CMD instruction in progress

bit 6 ASI_CMD instruction error

Details of the results of the ASI_CMD instruction to read slave status

In the case of slave diagnostics by ASI_CMD instruction (%MWx value between 4

and 15), the slaves' status is returned in the bits (1=0K) of the %MWx+1 word. The
following table gives the detail of the results according to the value of the %MWx

word:

%MWx Y%MWx+1
value most significant byte least significant byte

bit7 |bit6 |bit5 |bit4 |bit3 |bit2 |bit1 |bit0 |bit7 |bit6 |bit5 |bit4 |bit3 |bit2 |bit1 |bit0
4,8,12 15A |14A |13A |12A |11A |[10A |[9A |8A |7A |6A |5A |4A |3A |[2A 1A |0A
59,13 31A |30A |29A |28A |27A |26A |25A |24A |23A |22A |21A |20A |19A |18A |17A |16A
6, 10, 14 15B |14B |13B |12B |11B |10B |[9B |8B |7B 6B |5B |4B |3B |2B |1B |0B
7,11,15 31B |30B |29B |28B |27B |26B |25B |24B (23B |22B |21B |20B |19B |18B |17B | 16B

To read whether slave 20B is active, the ASI_CMD instruction must be executed
with the %MWx internal word having a value of 7. The result is returned in the
%MWx+1 internal word; the status of slave 20B is given by the value of bit 4 of the
least significant byte: If bit 4 is equal to 1, then slave 20B is active.

258

35011386 05/2009




Installing the AS-Interface bus

Programming Examples for the ASI_CMD Instruction

To force the AS-Interface Master (positioned at 1 on the expansion bus) to switch to
Offline mode:

LD 1

[%MWO := 16#0001 ]

[%MW1 := 16#0001 ]

LD %SW73:X3 //If no ASI_CMD instruction is in progress, then continue
[ASI_CMD1 %MW0:2]  //to force the switch to Offline mode

To read the table of slaves active for addresses 0A to 15A:

LD 1
[%MWO := 16#0004 ]
[%eMW1 := 16#0000 //optional]

LD %SW73:X3 //If no ASI_CMD instruction is in progress, then continue
[ASI_CMD1 %MWO0:2]  //to read the LAS table for addresses 0A to 15A

35011386 05/2009

259



Installing the AS-Interface bus

AS-Interface V2 Bus Interface Module Operating Mode:

At a Glance

Protected Mode

Offline Mode

The AS-Interface bus interface module TWDNOI10M3 has three operating modes,
each of which responds to particular needs. These modes are:

e Protected mode,
o Offline mode,
e Data Exchange Off mode.

Using the ASI_CMD (see page 255) instruction in a user program allows you to
enter or exit these modes.

The protected operating mode is the mode generally used for an application which
is running. It assumes that the AS-Interface V2 module is configured in TwidoSuite.
This:

e continually checks that the list of detected slaves is the same as the list of
expected slaves,
e monitors the power supply.

In this mode, a slave will only be activated if it has been declared in the configuration
and been detected.

At power up or during the configuration phase, the Twido controller forces the AS-
Interface module into protected mode.

When the module is put into Offline mode, it first resets all the slaves present to zero
and stops exchanges on the bus. When in Offline mode, the outputs are forced to
zero.

In addition to using the PB2 button on the TWDNOI10M3 AS-Interface module,
Offline mode can also be accessed via the software by using the ASI_CMD
(see page 259) instruction, which also allows you to exit the mode and return to
protected mode.

Data Exchange Off Mode

When the Data Exchange Off mode is engaged, exchanges on the bus continue to
function, but data is no longer refreshed.

This mode can only be accessed by using the ASI_CMD (see page 256) instruction.

260

35011386 05/2009



Installing and Configuring the

CANopen Fieldbus

10

Subject of this Chapter

This chapter describes how to install and configure the TWDNCO1M CANopen
master module, the Twido Extreme integrated CANopen bus and its slave devices
on the CANopen fieldbus.

What's in this Chapter?

This chapter contains the following sections:

Section Topic Page
10.1 CANopen Fieldbus Overview 262
10.2 Implementing the CANopen Bus 276

35011386 05/2009

261




Installing and Configuring the CANopen Fieldbus

10.1 CANopen Fieldbus Overview

Subiject of this Section

This section is intended to provide you with general knowledge about the CANopen
fieldbus technology and to introduce CAN-specific terminology that will be used

throughout the remainder of this chapter.

What's in this Section?
This section contains the following topics:

Topic Page
CANopen Knowledge Base 263
About CANopen 264
CANOpen Boot-Up 267
Process Data Object (PDO) Transmission 270
Access to Data by Explicit Exchanges (SDO) 272
"Node Guarding" and "Life Guarding" 273
Internal Bus Management 275
35011386 05/2009 262




Installing and Configuring the CANopen Fieldbus

CANopen Knowledge Base

Introduction

The following describes useful technical terms and acronyms for CANopen network
communication.

EDS file
EDS (Electronic Data Sheet)

An EDS file describes the communication properties of a device on the CAN network
(baudrates, transmission types, I/O features, ...). It is provided by the device
manufacturer. It is used in the configuration tool to configure a node (like a driver in
an operating system).

PDO
PDO (Process Data Object)
CANopen frame containing I/O data.

We distinguish between:
e Transmit-PDOs (TPDOs with data provided by a node) and
e Receive-PDOs (RPDOs with data to be consumed by a node).

The transmission direction is always seen from a node's point of view. A PDO (either
TPDO or RPDO) does not necessarily contain the whole data image of a node.
Normally, analog input data and discrete input data are divided into different TPDOs.
The same is true for outputs.

sSbo
SDO (Service Data Object)
CANopen frames containing parameters.
SDOs are typically used to read or write parameters while the application is running.

COB-ID
COB-ID (Communication Object Identifier)

Each CANopen frame starts with a COB-ID working as the Identifier in the CAN
frame. During the configuration phase, each node receives the COB-ID(s) of the
frame(s) for which it is the provider (or consumer).

35011386 05/2009 263



Installing and Configuring the CANopen Fieldbus

About CANopen

Introduction

CANopen is a standard fieldbus protocol for industrial control systems. It is
particularly well suited to real-time PLCs, as it provides an effective, low-cost
solution for integrated and transportable industrial applications.

The CANopen Protocol

The CANopen protocol was created as a subset of CAL (CAN Application Layer
Protocol). By defining profiles, it can be more specifically adapted to use with
standard industrial components. CANopen is a CiA (CAN in Automation) standard
which was widely accepted by the motion industry as soon as it became available.
In Europe, CANopen is now recognized as the industry standard for industrial
systems based on a CAN design.

Physical Layer

CAN uses a differentially driven two-wire bus line (common return). A CAN signal is
the difference between the voltage levels of the CAN-high and CAN-low wires. (See
figure below.)

The following diagram shows the components of the physical layer of a two-wire
CAN bus:

(5] (5] 5]
—0 . .

2] . o | 3o

CAN-high wire

CAN-low wire

potential difference between CAN-high/CAN-low signals
120Q resistance jack

node

aHON =

The bus wires can be routed in parallel, twisted or shielded form in accordance with
electromagnetic compatibility requirements. A single line structure minimizes
reflection.

35011386 05/2009 264



Installing and Configuring the CANopen Fieldbus

CANopen Profiles
The communication profile

The CANopen profile family is based on a "communication profile", which specifies
the main communication mechanisms and their description (DS301).

The device profile

The most important types of devices used in industrial automation are described in
the "Device profiles". They also define device functionalities.

Examples of the standard devices described are:

discrete and analog input/output modules (DS401),
motors (DS402),

control devices (DSP403),

closed loop controllers (DSP404),

PLCs (DS405),

encoders (DS406).

Device Configuration via the CAN Bus

The ability to configure devices via the CAN bus is a basic requirement made by
manufacturers (for each profile family) to ensure autonomy.

General Specifications for CANopen Profiles
CANopen is a set of profiles for CAN systems with the following specifications:

open bus system,

real-time data exchange without protocol overload,

modular design with possibility of resizing,

interoperability and interchangeability of devices,

supported by a large number of international manufacturers,

standardized network configuration,

access to all device parameters,

synchronization and circulation of cyclical process data and/or event-driven data
(possibility of short system response times).

CANopen Product Certification

All manufacturers offering CANopen-certified products on the market are members
of the CiA group. As an active member of the CiA group, Schneider Electric
Industries SAS develops its products in compliance with the standardization
recommendations set by this association.

35011386 05/2009 265



Installing and Configuring the CANopen Fieldbus

CAN Standards

CANopen specifications are defined by the CiA group and can be accessed (subject
to some restrictions) on the group site at http://www.can-cia.com. The sourcecodes
for master and slave devices are available from the various suppliers.

NOTE: To find out more about CANopen standard specifications and mechanisms,
please visit CiA's home page (http://www.can-cia.de/).

Communication on a CANopen Network
The communication profile is based on CAL services and protocols.
It provides the user with access to two types of exchange: SDO and PDO.

On power up, the device enters an initialization phase then goes into the Pre-
operational state. At this stage, only SDO communication is authorized. After
receiving a startup command, the device switches to the operational state. PDO
exchanges can then be used, and SDO communication remains possible.

35011386 05/2009 266



Installing and Configuring the CANopen Fieldbus

CANOpen Boot-Up

Boot-up Procedure

A minimum device configuration specifies a shortened boot procedure. This

procedure is illustrated in the following diagram:

Initialization

Reset Application

!

Reset Communication

!

o—

Pre-operational

j
)

X}

Stopped

o

| 90

Legend

S

Operational J

Number

Description

Module power up

state.

After initialization, the module automatically goes into PRE-OPERATIONAL

NMT service indication: START REMOTE NODE

NMT service indication: PRE-OPERATIONAL

35011386 05/2009

267




Installing and Configuring the CANopen Fieldbus

Number Description

5 NMT service indication: STOP REMOTE NODE

6 NMT service indication: RESET NODE

7 NMT service indication: RESET COMMUNICATION

Active CANopen Objects depending on State Machine
The crosses in the table below indicate which CANopen objects are active in each

state.
Initialization Pre-operational | Operational Stopped
PDO object X
SDO object X X
Emergency X X
Boot-Up X X
NMT X X X

Reset Application
The device goes into the "Reset Application" state:

e after the device starts up,
e or by using the "Reset Node" Network management (NMT) service.

In this state, the device profile is initialized, and all the device profile information is
reset to default values. When initialization is complete, the device automatically
goes into the "Reset Communication” state.

Reset Communication
The device goes into the "Reset Communication” state:

e after the "Reset Application" state,
e or by using the "Reset Communication" Network management (NMT) service.

In this state, all the parameters (standard values, depending on the device
configuration) of the supported communication objects (objects pertaining to device
identification such as device type, heartbeat, etc.: 1000H - 1FFFH) are saved in the
object directory. The device then automatically goes into the "Init" state.

35011386 05/2009 268




Installing and Configuring the CANopen Fieldbus

Init

Pre-Operational

Stopped

Operational

The device goes into "Init" mode after being in the "Reset Communication” state.
This state enables you to:

e define the required communication objects (SDO, PDO, Emergency),
e install the corresponding CAL services
e configure the CAN-Controller.

Initialization of the device is complete and the device automatically goes into the
"Pre-Operational" state.

NOTE: The TWDNCO1M CANopen master module and the Twido Extreme
integrated CANopen bus master does not support SYNC mode.

The device goes into "Pre-Operational" state:

e after the "Init" state, or
e on receiving the "Enter Pre-Operational" NMT indication if it was in Operational
state.

When the device is in this state, its configuration can be modified. However, only
SDOs can be used to read or write device-related data.

When configuration is complete, the device goes into one of the following states on
receiving the corresponding indication:

e "Stopped" on receiving the "STOP REMOTE NODE" NMT indication,
e "Operational" on receiving the "START REMOTE NODE" NMT indication.

The device goes into the "Stopped" state on receiving the "Node stop" indication
(NMT service) if it was in "Pre-Operational” or "Operational" state.

In this state, the device cannot be configured. No service is available to read and
write device-related data (SDO). Only the slave monitoring function ("Node
guarding") remains active.

The device goes into the "Operational" state if it was in the "Pre-Operational" state
on receiving the "Start Remote Node" indication.

When the CANopen network is started using the "Node start" NMT services in
"Operational” state, all device functionalities can be used. Communication can use
PDOs or SDOs.

NOTE: Modifications to the configuration in "Operational" mode may have
unexpected consequences and should therefore only be made in "Pre-Operational”
mode.

35011386 05/2009

269



Installing and Configuring the CANopen Fieldbus

Process Data Object (PDO) Transmission

Definition of PDO

Types of PDO

PDOs are objects which provide the communication interface with process data and
enable them to be exchanged in real time. A CANOpen device's PDO set describes
the implicit exchanges between this device and its communication partners on the
network.

The exchange of PDOs is authorized when the device is in "Operational" mode.

There are two types of PDO:

e PDOs transmitted by the device (often labeled:Transmit PDO or Tx-PDO or
TPDO),

e PDOs received by the device (often labeled:Receive PDO or Rx-PDO or RPDO).

PDO Producers and Consumers

PDOs are based on a "Producer / Consumer" model. The device that sends out a
PDO is called the "producer" whilst the one that receives it is known as the
"consumer”.

Thus, writing an output to the TWDNCO1M master module, or to the Twido Extreme
integrated CANopen bus master, sends a TPDO associated with the master, which
contains the value of the output to be updated. In this case, the master is the PDO
"producer" (while the slave device is the PDO "consumer").

In contrast, an input is updated by the transmission of a RPDO by the master module
which is then the "consumer”.

PDO Transmission Mode

In addition to defining data to be transported, it is possible to configure the type of
exchange for each PDO.
PDO can be exchanged by the TWDNCO1M master module, or by the

Twido Extreme integrated CANopen bus master, in the following transmission
mode:

Mode number | Mode type Mode name

254 or 255 Asynchronous | Change of state

35011386 05/2009

270



Installing and Configuring the CANopen Fieldbus

Change of state

producer R

| consumer(s)

Change of state (Modes 254 and 255)

"Change of state" corresponds to the modification of an input value (event control).
Immediately after the change, the data is sent onto the bus. Event control makes it
possible to make optimal use of bus bandwidth, as only the modification is
transmitted, rather than the whole process image. This makes it possible to achieve
a very short response time, as when an input value is modified, it is not necessary
to wait for the next request from the master.

When selecting "change of state" PDO transmission, you should however bear in
mind that a number of events will probably occur at the same time, generating
delays whilst lower priority PDOs wait their turn to be transmitted to the bus. You
should also avoid a situation where continual modification of an input with a high-
priority PDO blocks the bus (this is known as a "babbling idiot").

NOTE: As a general rule, you should only choose to use PDO transmission with
analog input modules if the Delta mode (object 6426H) or the inhibit time (objects
1800H to 1804H, sub-index 3) are set to avoid a bus overload.

35011386 05/2009

271



Installing and Configuring the CANopen Fieldbus

Access to Data by Explicit Exchanges (SDO)

What is an SDO?

Service Data Objects (SDOs) allow a device's data to be accessed by using explicit
requests.

The SDO service is available when the device is in an "Operational” or "Pre-
Operational" state.

Types of SDO

There are two types of SDO:
e read SDOs (Download SDOs),
e write SDOs (Upload SDOs).

Client/Server Model
The SDO protocol is based on a 'Client / Server' model.
For a Download SDO
The client sends a request indicating the object to be read.
The server returns the data contained within the object.
For an Upload SDO

The client sends a request indicating the object to be written to and the desired
value.

After the object has been updated, the server returns a confirmation message.
For an unprocessed SDO

In both cases, if an SDO could not be processed, the server returns an error code
(abort code).

35011386 05/2009 272



Installing and Configuring the CANopen Fieldbus

"Node Guarding" and "Life Guarding"

Definition of Life-Time
The "Life time" parameter is calculated as follows:
Life Time = Guard Time x Life Time Factor

The object 100CH contains the "Guard Time" parameter expressed in milliseconds.
The object 100DH contains the "Life Time Factor" parameter.

Activation of Monitoring

If one of these two parameters is set to "0" (default configuration) the module does
not perform monitoring (no "Life Guarding").

To activate monitoring over time, you must at least enter the value 1 in the object
100DH and specify a time in ms in the object 100CH.

Improve Reliable Operation
To improve reliable operation, it is advisable to enter a "Life time factor" of 2.

If not, should a delay occur (for example due to processing of messages of the
highest priority or internal processing on the "Node Guarding") master, the module
switches into "Pre-Operational” state without generating an error notification.

Importance of Monitoring

These two monitoring mechanisms are particularly important to the CANopen
system, given that devices do not usually operate in event-controlled mode.

Slave Monitoring
Monitoring is performed in the following way:

Phase Description

1 The master sets "Remote Frames" (remote transmit requests) on the
"Guarding COB-IDs" of the slaves to be monitored.

2 The slaves concerned respond by sending the "Guarding" message. It
contains the "Status Code" of the slave and the "Toggle Bit", which must
change after each message.

3 The master compares the "Status" and "Toggle Bit" information:
If they are not in the state expected by the NMT master or if no response is
received, the master considers that an error is detected on the slave.

35011386 05/2009 273



Installing and Configuring the CANopen Fieldbus

Master Monitoring

If the master requests "Guarding" messages on a strictly cyclical basis, the slave
can detect if a master is inoperative.

If the slave does not receive a request from the master within the defined "Life Time"
interval (Guarding error), it considers that the master is inoperative ("Watchdog"
function).

In this case, the corresponding outputs go into an error state and the slave switches
back into "Pre-Operational" mode.

NOTE: The "Remote" request from the master obtains a response, even if there are
no values entered in the "Guard Time" and "Life Time Factor" objects. Time
monitoring is only activated when the values in the two objects are greater than 0.
Typical values for the "Guard Time" parameter are between 250 ms and 2 seconds.

"Guarding" Protocol

The value of the "Toggle Bit" (t) sent in the first "Guarding" message is "0".

Then, the bit changes ("toggles") in each subsequent "Guarding" message, which
makes it possible to indicate if a message has been lost.

The bus head indicates its network state (s) in the seven remaining bits:

Network state | Response
Stopped 0x04 or 0x84
Pre-operational | Ox7F or OXFF

Operational 0x05 or 0x85

35011386 05/2009

274



Installing and Configuring the CANopen Fieldbus

Internal Bus Management

Switching the Internal Bus to the "Stop" State

The internal bus automatically switches from the "Stop" to the "Run" state when the
communication module switches from the "Pre-operational" to the "Operational”
state.

When the internal bus switches to the "Stop" state all the expansion module* outputs
are set to zero.

The communication module outputs are maintained in their current state.

Configuration of Expansion Modules

The internal bus is used to update the configuration of the discrete and analog
expansion module* parameters.

The parameters are sent to the communication module when the bus is in the "Stop"
state.

These new configuration parameters are acknowledged when the bus goes into the
"Run" state.

NOTE: * Twido Extreme TWDLEDCK1 PLC does not support expansion modules.

35011386 05/2009

275



Installing and Configuring the CANopen Fieldbus

10.2

Implementing the CANopen Bus

Introduction

This section describes how to implement the CANopen fieldbus on the Twido PLC

system, using either the TWDNCO1M CANopen master module or the

Twido Extreme integrated CANopen bus.

What's in this Section?

This section contains the following topics:

Topic Page
Overview 277
Hardware Setup 279
CANOpen Configuration - Default Parameter 280
Configuration Methodology 284
Declaration of a CANopen Master 286
CANopen Configuration Tool 287
CANopen Network Slave Declaration 292
CANopen Objects Mapping (Slaves) 300
CANopen Objects Linking (Master) 304
CANopen Objects Symbols 307
Addressing PDOs of the CANopen master 308
Programming and diagnostics for the CANopen fieldbus 310
CANopen Hot Swap for Twido Controllers 317

35011386 05/2009

276




Installing and Configuring the CANopen Fieldbus

Overview

Hardware and Software Requirements

The following hardware and software is required to implement a CANopen bus on
your Twido compact or modular base:

Hardware

Requirements

Twido PLC compact or
modular base controller

Compact base:
e TWDLC<24DRF
o TWDLCe40DRF

Modular base:
o TWDLMDA2(Qeee
o TWDLMDAA4Qeee

CANopen master

1 CANopen master module: TWDNCO1M

CANopen slave devices

16 CANopen slaves maximum

CANopen connectors and
cables

Programming cable for the
Twido PLC

e Serial cable: TSX PCX1031
e USB cables: TSX CUSB485,
TSX CRJMD25 and TSX PCX3030

® Mini-DIN to free wire communication cable:

TSX CX100

Software

Requirements

Twido PLC configuration
software

TwidoSuite

35011386 05/2009

277



Installing and Configuring the CANopen Fieldbus

The following hardware and software is required to implement a CANopen bus on

your Twido Extreme:

Hardware

Requirements

Twido Extreme base
controller

TWDLEDCK1

CANopen slave devices

16 CANopen slaves maximum

CANopen connectors and
cables

See Twido Extreme Hardware Guide.

Programming cable for the
Twido Extreme

e Serial cable: VW3 A8106
USB cables: TSX CUSB485 and TWD XCAFJ010
® PLC BlueTooth adapter: VW3 A8114

Software

Requirements

Twido PLC configuration
software

TwidoSuite

CANopen Implementation Procedure

The following procedure will guide you through the installation, configuration and
use of your CANopen network:

Step Description

Hardware Setup

Configuration Methodology

Declaration of the CANopen Master

Network CANopen Slave Declaration

CANopen Objects Mapping

CANopen Objects Linking

N|{oloa| || N =

CANopen Objects Symbolization

8 Network CANopen Diagnostics

The following sub-sections will provide a detailed description of each step of this procedure.

35011386 05/2009

278



Installing and Configuring the CANopen Fieldbus

Hardware Setup

Twido Extreme CANopen Wiring

For Twido Extreme base controller see .

Installing the TWDNCO1M Master Module

For other compact or modular base controllers install the TWDNCO1M master
module on a Twido PLC system (DIN-rail or panel mounting) and connect it to the
Twido PLC internal bus (the connection method is the same as for Assembling an
I/O Expansion Module). Follow these steps:

Step

Action

Description

1

Installation Preparation

Consult the Twido Programmable Controllers

Hardware Reference Guide (TWD USE 10AE) for

instructions on:

e correct mounting positions for Twido modules,

® adding and removing Twido components from a
DIN rail,

e direct mounting on a panel surface,

® minimum clearances for modules in a control
panel.

Mounting the
TWDNCO1M Module

Install the TWDNCO1M master module on a DIN rail
or panel. For more details, see TwdoHW - Installing
an expansion module.

Module Connection to
the Twido PLC’s Bus

Connect the CANopen master module to the Twido
PLC internal bus (for more details, see TwdoHW -
Installing an expansion module).

CANopen Wiring and
Connections

Follow the wiring and connections directions
outlined in CANopen Wiring and Connections to
connect the CAN bus power supply and signal lines.

35011386 05/2009

279



Installing and Configuring the CANopen Fieldbus

CANOpen Configuration - Default Parameter

Overview

This functionality allows the user to configure the reset of CANOpen slaves.

User functionality

To reset the CANOpen slaves three configurations exist:
o Default Reset (Default Value):
CANOpen Master choose which Reset is sent to slave (Reset Com only for
Lexium 05, Reset All for all other slaves).
e Reset All Parameters:
CANOpen Master forces the Reset A1l on the slave (even Lexium 05).
o Reset Communication Only (recommended for customers):
CANOpen Master resets only communication of the slave.

Each configuration can be used for each slave.

35011386 05/2009 280



Installing and Configuring the CANopen Fieldbus

Modes of Operation
To configure CANOpen network, add CANOpen Master expansion Describe tab
of TwidoSuite. Next, add its CANOpen Slaves for the Describe list and link them

each other.

Step | Action
1 Double click on CAN Open network to link the PDOs of the slave.

= CANOpen Elements
+ (DS-401) /0 Modules
- (DS-402) Drives and Motion Control
= Lexium 05 (V1.12)
BASIC_LXMO05 (V1.0)
Lexium05 (V1.12)
w ATVE1_V1.2 (V1.1)
~ ATVT1VA.1 (V1.1)
BASIC_ATV71 (V1.0)
ATV71_V1.1 (V1.1)
= ATV31_V1.2 (V1.2)
BASIC_ATV31 (V1.1)
ATV31_V1.2 (V1.2)
CanOpen Slave
« Ascii Elements

BASIC_ATV1 (V1.0)

Seller: Telemecanique
Description :EDS ofthe ATV 71
Author:S.T.LLE.
Creation:01-20-2004

A TwidoSuite 2.20

35011386 05/2009 281



Installing and Configuring the CANopen Fieldbus

Step | Action
2 Right click on the slave to configure the CAN Open (slave’s mapping) and to configure the slave

Configuration

— e

Protocol

Type

Address | 1

Supervision | None

Init Default v
All

Comm
My network 1
250 Default

NOTE: It is possible to configure the Reset Parameter. Default is the default value. It is also possible to
delete the slave.

35011386 05/2009 282



Installing and Configuring the CANopen Fieldbus

Step | Action
3 Double click on the CAN Open master to see the global configuration of the module on Configuration Part of
TwidoSuite.

Compatibility
To implement this functionality, the compatibility level must be increased to 5.2.

NOTE: New applications generated with TwidoSuite V2.20 won’t be open with an
oldest version of TwidoSuite. The Firmware is also impacted, a new version must be
synchronized with TwidoSuite.

35011386 05/2009 283



Installing and Configuring the CANopen Fieldbus

Configuration Methodology

Overview

The CANopen configuration is performed via the CANopen Configuration tools
accessible from the Describe window in TwidoSuite.

NOTE:

1. CANopen network, master and slave configuration, as well as configuration of
communication parameters is performed only in Offline mode.

2. No change to the CANopen configuration is allowed in Online mode.

3. In Online mode, only certain parameters can be adjusted, such as %IWC and
%QWC PDO addressing parameters.

35011386 05/2009

284



Installing and Configuring the CANopen Fieldbus

Configuration Methodology

The following table describes the different software implementation phases of the
CANopen bus:

Mode

Phase

Description

Local

CANopen master
declaration

In the describe window, add a TWDNCO1M
CANopen master module to your Twido

application.1

TThis is not needed in the case of the Twido Extreme TWDLDCK1, as the
CANopen master bus is integrated in the base controller.

Configuration of the
CANopen network

Configure the CANopen network by:

e importing EDS files of all slave devices to the
network catalog,

® adding the slave devices from the catalog to the
CANopen network.

PDO mapping Perform the mapping of TPDOs and RPDOs
objects of each slave device declared on the
network.

PDO Linking Link each slave PDO to the corresponding master

module PDO.

Local or
connected

Symbolization
(optional)

Symbolization of the variables associated with the
slave devices.

Programming

Programming the CANopen function.

Connected

Transfer

Transfer of the application to the PLC.

Debugging

Debugging the application with the help of
animation and monitoring screens

NOTE: The declaration and deletion of the TWDNCO1M CANopen master module
on the expansion bus is the same as for any other expansion module. However, only
one CANopen master module is allowed on the Twido expansion bus. The

TwidoSuite user interface program will not permit another CANopen module to be

added.

Precautions Prior to Connection

Before connecting (via the software) the PC to the controller and to avoid any
detection problem:

e Ensure that no slave is physically present on the bus with address 127 (127 is a
reserved, factory-set address assigned to the TWDNCO1M master module or to
the Twido Extreme integrated CANopen bus master).

e Ensure that there a no slaves installed on the CANopen bus with duplicate
addresses.

35011386 05/2009

285



Installing and Configuring the CANopen Fieldbus

Declaration of a CANopen Master

Overview
This section explains how to declare a CANopen bus master module on your
compact or modular controller internal bus.
NOTE: The information in the section is not applicable to Twido Extreme
TWDLDCK1 base controller which has an integrated CANopen bus master module.
Procedure
The table below shows the different steps when declaring the master CANopen.
Step Action Comment
1 Select Describe step from the See .
TwidoSuite interface.
2 Display the product catalog and select | See .

a TWDNCO1M module to add to the
system description.

Note: A TWDNCO1M master module can be inserted in any
available expansion position. It can be subsequently moved to
the left or right of other expansion modules.

You may continue adding other expansions module (up to 7
including the TWDNCO1M module).

Note: Only one TWDNCO1M CANopen master module is
allowed.

Only TWDCeA24DRF, TWDCe*40DRF, TWDLMDA20e** and
TWDLMDAA4Qeee controllers are supported.

35011386 05/2009

286



Installing and Configuring the CANopen Fieldbus

CANopen Configuration Tool

Overview
This section describes how to access the CANopen configuration tool.

CANopen Configurator

The CANopen configuration tool is accessed from the Describe window by clicking
on the appropriate CANopen element as follows:

35011386 05/2009 287



Installing and Configuring the CANopen Fieldbus

CANopen Action Result
element
CANopen double click (or
slave linked to | right click and X
CANopen select Available Objects DO =
e v
master CANopen » 3008 - digitalio d b Transmit
Configuration) :3009 - digital io | Name Indesx COD-ID
g 5 igOA - capture 1 [ PoO RX1
on slave IS} - alow@sfi 2| PDO Rx4 1A03 482
301C - status
> 201F - monitor target
p 6041 - Statusword
p B063 - position actual value int
» 6064 - position actual value Mapped Objects
B06C - welocity actual value @ % 4= ’“716
o 1 6041
OK | Cancel |
CANopen double click (or
master right click and Description of the module  Reference nunber [TWDNCOTM . Address [T % »| E
TWDNCOM 1 select Description Cihopen bus master mode (50 mA) il
(Read only) Configuration)
on the master Module configuration.
|Used | Address | Symbel Object Size |
O %MIC100 D _STATUS BASIC_ATY Drivecom stetus register, 16
L# | Slave ke | Supervision | [0 %WC101  D_CONTROL BASIC & Conirol effort; 18
O %MiC1.02 D_ERROR_BASIC_ATY  Error code; 16
O %GWC100 D_COMMAND_BASIC_&  Drivecom command req, 16
O %GWC1 01  D_TARGET_BASIC_AT Tarnet welncity; 16
35011386 05/2009

288



Installing and Configuring the CANopen Fieldbus

CANopen Action Result
element
Extreme double click (or
TWDLEDCKT1 | right click and Description of the module  Referencerurber [TWDLECKA | Address[0 | %4/ »]
(Read only) | select S -
Configuration) AN s L
on the base, Module configuration.
then select inpns | owtpns | can e [Catopen |
CANOpen tab in Integrated CANopen hus
the resulting ¥ Activate CANopen network Jused | Addess | Symbol Objed Jsize|
T %WWC100 D_STATUS BASIC_ATY | Drivecom stalus register, 16
panel [E |ave | Tupe | | [m) FAMCT.01 D_CONTROL_BASIC_A Cortrol effort; 16
O %WC102  D_ERROR_BASIC_ATY  Errer code; 16
O %EWCI00  D_COMMSND_BASIC_&  Drivecom commend reg; 16
[ %EWCI0A  D_TARGET_BASIC_AT Target velocty, 16
CANopen Double click or
select
Configuration CANopen network
Name my network 1
Parameters
Baudrate Kbps
Supetrvision ms
OK I Cancel I
35011386 05/2009

289




Installing and Configuring the CANopen Fieldbus

CANopen Action Result
element
CANopen Right click on
Slave (inked | the slave and
or non-linked) | select
) . Element
Configuration
Name Slave 0
Protocol
Type | CANopen v
Address | 1 h 4
Supervision | None v
OK | . cCancel |
CANopen Double click or
Port on (right click and Linking x
Master select Not-Linked Slaves Linked Master
CANopen Type [Transmit ¥ = @ T 4 Type |Receive ¥
configuration) PDO [Name |[cOB- # [PDO — Name | COE-ID
=i ave_ PDO 181
on the purple PGS Slave 1 PDO| 481
Canopen port 3| Slave 0| PDO| 681
4
5
8
7
8
9
10
11
11
5DO
Memory [ HEEEEE 18%
0K I Cancel |

35011386 05/2009

290




Installing and Configuring the CANopen Fieldbus

The Master CANopen configuration screen can also be viewed (but not edited) by
selecting Program — Configure — Configure the Hardware task.

e for Twido Extreme TWDLEDCK1, select the CANopen tab and click Configure.

e for other compact and modular base controllers, selectthe TWDNCO1M module
in the upper graphical pane and click Configure in the lower configuration pane
(there are no tabs for compact and modular PLCs).

NOTE: You can deactivate the Twido Extreme integrated CANopen bus master by
clearing the Activate CANopen network check box in the CANopen tab of the
configuration pane. This will free CANopen dedicated memory. Deactivating the
Twido Extreme integrated CANopen bus master will delete the CANopen network
configuration.

35011386 05/2009

291



Installing and Configuring the CANopen Fieldbus

CANopen Network Slave Declaration

Overview

The network CANopen slave declaration is a three-stage process that consists of:

1. importing the CANopen slave devices’ EDS files into the Twido Describe catalog,

2. building the CANopen network by adding up to 16 slave devices from the catalog
to the network,

3. configuring the network management parameters (network speed and error
control protocol parameters.)

Importing Slave Profiles

The table below describes how to import new CANopen slaves profiles (.EDS files)
into the CANopen Configuration Tool catalog:

Step

Action

1

Right click on CANopen Elements in the Catalog of the Describe window and
select Import as shown below.

[-}-Network Elements

[t]-Modbus Element
B CANec Elarants
- . _ lodules
i-Advantys FTB (v1.0)
i l-Advantys OTB (V1.0)
E——(DS-402) Drives and Motion Control
[-}-Lexium03 (V1.12)

-BASIC_LXMO5 (V1.0)
¢ -Lexium05 (V1.12)
-ATVE1_V1.2 (V1.1)

| -BASIC_ATV61 (V1.2)

L OATVBT_V1.2 (V1.1)

[-ATYI_Y1.1 (V1.1)

| -BASIC_ATVT1 (V1.0)

LOLATVTIVI21 (VL1

[--ATVS1_V1.2 (V1.2)
-BASIC_ATV31 (V1.0)
LATVEI_V1.2 (V1.2)

[+}-ASCIl element
Result: The operating system’s Open dialog box appears.

Browse to the location of the folder containing the EDS files of CANopen slave
devices you want to add to the catalog.
Result: The name of available EDS files appears in the Open dialog box:

35011386 05/2009

292



Installing and Configuring the CANopen Fieldbus

Step

Action

Choose an EDS file ("filename".EDS) from the list and click Open.
Result: The CANopen Configuration Tool loads the object dictionary for the
selected device.

Note: This process may take several minutes, depending on the size of the
selected EDS file. A progress bar indicates the state of completion of the loading
process, as shown in the example below:

FTB 1CN16EPO (\1.0) - Object Dictionary Loading 55%

]

Wait till the loading process is complete, then repeat steps 2 to 3 for any new
slave profile you want to add to the catalog.

Note: You only need to perform this process once, for all device profiles and
object dictionaries listed in the loaded catalog are stored by TwidoSuite.

35011386 05/2009

293




Installing and Configuring the CANopen Fieldbus

Step

Action

To display the device properties of a CANopen slave, expand the CANopen
Elements tree structure in the catalog of the Describe window by double clicking
the type of element (or the plus sign to its left)to the lowest level and then, clicking
the slave device, as shown below:

Catalog

Place

Ij-N.etwork Elements

' Modbus Element
Z-CANopen Elements
F_HDS-401] /O Modules

-Advantys FTB (V1.0
-Advantys OTB (V1.0)

E}'(I;)S-402) Drives and Motion Control
[-l-Lexium05 (V1.12)
-BASIC_LXMO5 (V1.0)
-Lexium05 (v1.12)
ATVE1_V1.2 (V1.1)
~BASIC_ATV61 (V1.2)
AATVB1_ V1.2 (M1.1)
ATV71_V1.1 (V1.1)
iOLATVTI_V1.21 (V1.1)
]-ATV31_\1.2 (V1.2)

- BASIC_ATV31 (V1.0)
=ATV3I1_V1.2 (V1.2)
[z-ASCIl element

[-}-Remote Twido

[+}-CANJ1939 Elements

BASIC_ATV371 (V1.0)

Vendor: Telemecanigue
Description: EDS ofthe ATV71
Author: S.T.L.E.

Creation: 01-20-2004

Note: The device properties of the selected CANopen slave are shown in the
lower half of the Catalog area, these are:

the vendor’'s name (for example, Schneider Electric),

the slave profile (for example, EDS file for ATV 31 CANopen Slave),
the author’s name (for example, Author S.T.I.E.),

the creation date for that profile (for example, 01-14-2004.)

35011386 05/2009

294




Installing and Configuring the CANopen Fieldbus

Step

Action

Note: Basic slaves, for example BASIC_ATV371, are slaves that when included
in your CANopen configuration (Describe workspace) are preconfigured. Other
profiles in the catalog, for example, ATV71_V1.1 (V1.1) provide you with
unconfigured slaves that can be later customized.

In order to add OTB or FTB slaves, right click on Advantys OTB (or Advantys
FTB) and select Configure. This launches the external configuration tool
Advantys Lite which should be already installed on your computer.

To delete a slave profile from the Catalog, right click on the profile, in the Catalog
and select Delete as shown below.

E;]"c.l-\Nopen Elements
E:I--(I;)5-401) 1{O Modules
i i-Advantys FTB (V1.0)

i -Advantys OTBE (V1.0)

EI==(DS-402) Drives and Motion Control
[=}-Lexiumo05 {v1.12)

i -BASIC_LXMOS5 (v1.0)

- Lexium05 (V1.12

TVI:1 AYL NIV ]

iB Delete V1.2)

fOLATVE1_V1.2 (V1.1)

CHATVT1_V1.1 (V1.1)

| LBASIC_ATVT1 (V1.0)

CORATVTI_VI21 (VLD

C1-ATV31_V1.2 (V1.2)

BASIC_ATV31 (V1.0)

SATV31_V1.2 (V1.2)

Note: You may store in the CANopen Elements Catalog more device profiles than
you actually need for your current CANopen bus configuration. Profiles that are
already loaded in the Catalog may be stored for future use.

35011386 05/2009

295



Installing and Configuring the CANopen Fieldbus

Building the CANopen Network

The table below describes how to declare slave devices on a Twido CANopen
network. Note that you can only declare slaves whose EDS profiles have been
previously added to or are already stored in the Catalog. Some slaves (e.g.
Advantys FTB and OTB modules) require an external configuration tool. Such
slaves must be configured externally prior to connecting the slave to the master. If
the necessary tool is not installed on your PC, you will not be able to add these
slaves to the Describe graphical workspace..

Step Action

1 Expand the CANopen Elements tree structure in the Catalog of the Describe
window to display the appropriate slave device and its properties as previously
described in step 5 of Importing Slave Profiles.

Catalog

Place

[;I-Bases

Expansion modules

"Serial Expension Modules

[+-Serial Adapters

-RTC Cartridges

‘Memory Cartridges

[*i~Qperation Display

E}Network Elements
[1-Modbus Element
[-}-CANopen Elements

[-]-{DS-401) O Modules

Advantys FTB (V1.0)
Advantys OTB (V1.0)

[-}-{DS-402) Drives and Motion Control

[Z1-Lexiumo5 (v1.12)

i -BASIC_LXMO5 (V1.0)

i Lexium05 (V1.12)

}-ATVE1_\1.2 (V1.1)

i BASIC_ATVE1 (V1.2)

iOLATVBT V1.2 (v1.1)

ATV _V1.1 (V1.1)

PORATVTI_V1.21 (VIL1)

1-ATV3_\1.2 (V1.2)
-BASIC_ATV31 (V1.0)
CATV31 V1.2 (V1.2)

35011386 05/2009

296



Installing and Configuring the CANopen Fieldbus

Step

Action

Drag and drop the desired number of slave devices from the Catalog. (See

Positioning Methods and Rules)

Result: The devices appear unconfigured in the graphical workspace of the

Describe window.

Notes:

e If you drag and drop a BASIC element from the catalog tree, for example:
BASIC_ATV371, the device placed in the Describe workspace is
preconfigured (PDO mappings defined) and requires only an address and
an optional name to be assigned. If you select a non basic element, for
example: ATV71_V1.1 (V1.1), the device placed in the Describe workspace
can be customized, for more information refer to Objects Mapping
(see page 301).

® A maximum of 16 slaves can be declared on a Twido CANopen network.

Optional: You can configure a slave by right clicking on it and selecting
Configure
Result:

Configuration B

Element
Name Slave 0
Protocol
Type ‘ CANopen b
Address ‘ 1 v
Supervision ‘None v

OK_ ] . Cancel |

Here you can define:

o Name: a maximum of 32 characters - but size should be limited as the name
is used to generate automatic symbols

® address: available values from 1 to 16

e supervision mode (the error control protocol you wish to use to manage
communications between the TWDNCO1M master module or the
Twido Extreme integrated CANopen bus master and the selected slave
device):
o Node Guarding
o Heartbeat
® None (see Supervision Options below)

This step is optional as slaves will be automatically configured with defaults
when the network is created (see next step).

35011386 05/2009

297



Installing and Configuring the CANopen Fieldbus

Step Action

4 You can connect slaves to other slaves by Creating a Link. If the slaves are
unconfigured they will remain unconfigured until they are connected to a
CANopen master.

5 Connect the slaves to the CANopen master by Creating a Link.

Result: The connected slave (if previously unconfigured) now displays a
configuration with a name and node address. If the slave was previously
configured it retains it configuration when it is connected to the master.

The newly connected (previously unconfigured) slave device takes the node
address with the lowest available index. (For example, if slave devices are
declared at node addresses 1, 2 and 4, then a newly added slave device will
take the available node address 3, as default.

6 You can change a slave’s name and assign it to any available node address (1
to 16) by configuring it as described in step 2.

7 Repeat steps 1 to 5 for any new slave device you want to declare on the
CANopen network.

8 To delete a slave device or network link from the CANopen network, right click
the object in the graphical workspace and select Delete.

9 To configure network management parameters, right click on the network
link and select Configure (see Configuring the Network Management
Parameters (see page 292)below).

Note: The network management parameters can only be configured if the
CANopen master is linked. If the CANopen master is not linked only the name
of the network can be modified. (Default: my network x)

Supervision Options

The error control protocol you wish to use to manage communications between the
TWDNCO1M master module or the Twido Extreme integrated CANopen bus master
and the selected slave device is defined in the slave configuration with the following
options:

e Node Guarding
e Heartbeat
e None

If the supervision option is set to None in the network slaves table, the outputs will
not return to their fallback values in the event of a break in connection (*) between
this slave and the TWDNCO1M master module or the Twido Extreme integrated
CANopen bus master.

(*) this disconnection can be caused by:

e disconnection of the expansion TWDNCO1M CANopen master module from the
Twido PLC base controller (not applicable to Twido Extreme controller),
e disconnection of this CANopen slave from the Twido CANopen bus,

35011386 05/2009

298



Installing and Configuring the CANopen Fieldbus

an inoperative bus cable,

a TwidoSuite "Reset" command (Online — Firmware / Reset),

a TwidoSuite load configuration command (Online — Download),

a command for firmware download to the TWDNCO1M master module (or to

Twido Extreme base controller) via TwidoSuite (Online — Firmware Download)
(not applicable to Twido Extreme controller.

Configuring the Network Management Parameters

The procedure below describes how to configure network management parameters
such as the Baudrate (network speed) and life-time. (Error control protocols are
defined in the slave configuration)

Step Action
1 To configure network management parameters, right click on the network
link and select Configure.
Result:
CANopen network
Name my network 1
Parameters
Baudrate Kbps
Supervision ms
OK I Cancel I
2 Select the Baudrate (network speed) from the drop-down list: 125, 250 (default
value), 500.
3 Configure the Life-time period. This takes values in the range [300, 32,767]

with default value 300 ms. This parameter defines the communications cycle-
time period that will be implemented in the supervision field of each slave
device.

In the Supervision field, enter the consumer time in ms.

The CANopen master calculates the producer time from this value using the
following formula:

Producer time = 2/3 Consumer time

Note: Do not enter 0 in this field.

35011386 05/2009

299



Installing and Configuring the CANopen Fieldbus

CANopen Objects Mapping (Slaves)

Overview

The Mapping dialog box of a slave CANopen configuration allows you to consult the
slave dictionary and configure the PDOs of each slave device (for slaves without
default PDOs) declared on the network.

Mapping Dialog box
To access the Mapping dialog box, double click (or right click and select CANopen
Configuration) on a linked slave. This option is unavailable if the slave is not linked
to a CANopen Master.

Result: The Mapping dialog box appears on screen, as shown in the following
figure:

Mapping —> Save_0

Available Objects PDO
Type v
» 3008 - digitalio -~ YPe [Tranem
» 3009 - digitalio _ Name Indlex COD-ID
» 300A - capture 1 [ Foo x4
y 3018 - dev control 2| PDO RX4 1403 482
301C - status
> 301F - monitor target
» 5041 - Statusword
» 5063 - position actual value int
» 6064 - position actual value Mapped Objects
B06C - velocity actual valus RN . ’“7 16
# |Name Index Size
o W 6041
Cancel | oK |

35011386 05/2009 300



Installing and Configuring the CANopen Fieldbus

Objects Mapping

To find out how to use the Mapping dialog box to configure the TPDOs and RPDOs
of each slave device, follow these guidelines:

35011386 05/2009 301



Installing and Configuring the CANopen Fieldbus

Step | Action
1 | Double click (or right click and select CANopen Configuration) on the slave for you
wish to configure. (The slave must be linked to a CANopen Master for this option to
be available).
Result:
Mapping —= Savwe 0 x
Available Objects PDO
» 2008 - digitalio = W8 |Tranemt X
P 3009 - digitalio _ Name Index COC-D
: 300A - capture 1 [ Poo RX1
301B - d trol
(S 5;‘;5:” 1o 2| PDO R¥4 1403 482
301F - monitor targe:
p 8041 - Statusword
p 5063 - position actual value int
» B0B4 - position actual valueg Mapped Objects
B06C - velocity actual value BT . ’“716
=N 1
E
OK I Cancel I
All CANopen objects supported by the selected slave are displayed on the left under
Available Objects.
Predefined default PDOs - Transmit-PDOs (PDO TX) for the selected slave are
displayed on the right. Use the Type toggle list to display the predefined default
Receive-PDOs (PDO RX).
Mapped Objects on the lower right shows the predefined mapping of each selected
PDO.
2 | You may choose to customize the PDO mapping for "non BASIC" slaves, for

example: ATV71_V1.1 (V1.1), that you dragged and dropped into the Describe
graphical workspace. The "BASIC" slaves are already configured and cannot
therefore be customized. Customization is possible using these Mapped Objects.
A RPDO or TPDO is a 64-byte object that can contain up to eight 8-byte word objects
or four 16-byte word objects or any combination of those two types of word objects,
not too exceed the overall 64-byte limit of the PDO.

To customize the PDO mapping, select the Mapped Object you wish to modify.
Example: Select the first Transmit-PDO (PDO R1).

Result: The predefined PDO mapping (or the current customized mapping) appears
in the Mapped Object frame.

35011386 05/2009

302




Installing and Configuring the CANopen Fieldbus

Step | Action

3 | To delete an unused word object from the PDO mapping structure, select the word
object (indexed 1 to 8) and click the Delete icon y

4 | From the Available Objects frame, select the word object in the object family that
you wish to map, and click the Add icon ﬂ to append the word object to the
Mapped Obijects structure.
Note: To restore the default mapping structure for the selected PDO, click the

2

Default icon Q

5 | Tochange a word object’s address within the mapped PDO structure, use the Move
up/down arrow icons ﬂ/ﬂ

6 | Click OK to confirm changes to the mapped PDO structure and save the PDO

mapping to the TwidoSuite project (or cancel to abandon modifications).

Repeat steps 2 through 6 for each PDO mapping you wish to configure.

PDO memory usage:
Usage of PDO memory can be monitored via the memory status bar located on the

right in the Mapped Objects frame: LLLLLL .

35011386 05/2009

303




Installing and Configuring the CANopen Fieldbus

CANopen Objects Linking (Master)

Overview

Linking Dialog Box

The Linking dialog box of the Master CANopen Configuration is used to define the
physical link between the selected PDOs of the slave devices and the TWDNCO1M
CANopen master module or the Twido Extreme integrated CANopen bus master

PDOs.

To access the Linking dialog box, double click (or right click and select CANopen
Configuration) the CANopen Master port on the TWDNCO1M master module or

the Twido Extreme integrated CANopen bus master.

Result: The Linking dialog box appears on screen, as shown in the following figure:

[ning

Not-Linked Slaves PDOs

Linked Master PDOs

Type |Transmit ¥ = @ i 4 Type |Receive ™
PDO [Name | coeD # |PDO Name  COB-ID)
118 SIEVEE PDO TX 181
2 g Slave_1 PDOTX 481
3 |& Slave 0 PDOTX 691
4
5
6
7
8
2]
10
11
11
SDO
Memory space [NEEENN 18%
0K I Cancel |
I

35011386 05/2009

304



Installing and Configuring the CANopen Fieldbus

Objects Linking

To find out how to use the Linking dialog box to define the physical link between
slave device and master module PDOs, follow these guidelines:

Step Action

1 Double click (or right click and select CANopen Configuration) the CANopen
Master port on the TWDNCO1M or Twido Extreme.
Result: The Linking dialog box appears on screen, as shown in the following

figure:
Not-Linked Slaves PDOs Linked Master PDOs
Type |Transmit Y = @ 4 & Type | Receive ¥
PDO [ Name | COB-ID # |PDO Name  COB-ID)
1| EIEVME PDO TX 181
2 & Slave_1 PDOTX 481
3 & Slave_ 0 PDOTX 691
4
5
6
7
8
9
10
11
11
SDo
Memory space [INHEEN 18%
0K I Cancel I

Non-linked PDOs are displayed on the left under Not-Linked Slave PDOs and
the linked PDOs are displayed on the right under Linked Master PDOs.

Use the Type toggle list to switch between Receive and Transmit PDOs.
Note: Selecting Receive or Transmit in the Slave PDOs frame automatically
toggles the Master PDOs to the opposite type: Transmit or Receive,
respectively.

2 From the Not-Linked Slave PDOs frame, select the PDO you wish to link to the
TWDNCO1M CANopen master or the Twido Extreme integrated CANopen bus

master and click the Add icon ﬂ to append the PDO to the Master PDOs
link list.

Note: The TWDNCO1M master and the Twido Extreme integrated CANopen
bus master supports a maximum of 16 TPDO links and 16 RPDO links.

3 To change the address index of a PDO link within the Linked Master PDOs

frame, use the Move up/down arrow icons ﬂ / {‘ .

35011386 05/2009 305



Installing and Configuring the CANopen Fieldbus

Step Action
4 To delete an unused PDO link within the Linked Master PDOs frame, select the

desired PDO (indexed 1 to 16) and click the Delete icon ﬂ

5 Click OK to confirm changes to the mapped PDO structure and save the PDO
linking to the TwidoSuite project (or cancel to abandon modifications).

6 Repeat steps 1 through 5 for each slave PDO you wish to link to the CANopen
master.

SDO additional memory usage:

Predefined PDOs and word objects do not use any additional SDO memory.
However, both the removal and the addition of word objects to the PDO
mapping structure require the use of additional system memory. The current
use of SDO memory is in the status bar located at the bottom of the Linking

SDO JE—
dialog box: [ Memory space W 4 s,

35011386 05/2009 306



Installing and Configuring the CANopen Fieldbus

CANopen Objects Symbols

Overview
The Symbol column in the CANopen master module configuration dialog box
allows you to define a symbol for the variables associated with the CANopen master.
Object Symbols
CANopen object symbols can be edited in the Master module configuration as
follows:
Step Action
1 Double click (or right click and select Configuration) on the CANopen master.
For Twido Extreme, double click (or right click and select Configuration) on the
base and then select the CANopen tab in the resulting panel.
The following is displayed:
Description of the module  Reference number | TWDNCO1M Address 1 ﬂﬂ i
Descrigtion CANopen bus mester modue (50 ma) -
Module configuration.
|used| address | Symbal Oblect |size|
0 %MC100  D_STATUS_BASIC_ATY  Drvecom status register; 16
L | Slave Type | Supervision | 0 %01 D_CONTROL_BASIC_A Centrol effort; 16
T %WC102  D_ERROR_BASIC_ATV Ertor code; 16
7 %GWC1 00 D_COMMAND_BASIC_A  Drivecom commandreg, 16
O %awC101  D_TARGET_BASIC_AT Target velocity; 16
2 Edit the entries in the Symbol column: give descriptive names for the variables.
You can use up to to 32 characters:
® Lettersa-z
o Numbers 0-9
® Underscore _
All other characters and spaces are forbidden.
NOTE: For more information about editing symbols, please refer to Symbolizing
Objects, page 50.
35011386 05/2009

307



Installing and Configuring the CANopen Fieldbus

Addressing PDOs of the CANopen master

At a Glance
This sub-section describes addressing of PDO inputs and PDO outputs of the
CANopen master.
To avoid confusion with Remote 1/Os, a new designation is implemented for
CANopen objects’ syntax: %IWC for example.

lllustration

Reminder of the addressing principles:

For the Twido Extreme TWDLEDCK1 PLC:

% WG, QWGC, IWGCD 1 . ]
‘Symbol ‘ QWGCD, IWCF, QWGCF 1 indicates ‘ Channel
CANopen. number

Type of object

For other compact and modular base controllers:

%  IWC, QWC, IWGD, x : n : i
|Symbol |QWCD, IWCF, QWCF | EXPagslion | FOO | Channel
Type of object ;T;jﬂdr;; number number
Specific Values
The table below gives specific values to CANopen slave objects:
Part Values Comment
IWC - Image of the physical PDO input.
QwcC - Image of the physical PDO output.
IWCD - Same usage as IWC, but in double-word
format.
QWCD - Same usage as QWC, but in double-word
format.
IWCF - Same usage as IWC, but in float format.
QWCF - Same usage as QWC, but in float format.

35011386 05/2009 308



Installing and Configuring the CANopen Fieldbus

Part Values Comment

X 1to7 Address of TWDNCO1M CANopen
master module on the Twido expansion
bus.
For Twido Extreme x=1

n 0to 15 PDO number (according to PDO index.)

i Oto7 Channel number (according to PDO sub-
index.)

Example
The table below shows an example of PDO addressing:

1/0 object Description

%IWC4.1.0 PDO number 1, sub-index 0 input of the CANopen module located
at address 4 on the Twido expansion bus.

Implicit Exchanges

The objects described below are exchanged implicitly, in other words they are
exchanged automatically on each PLC cycle.

35011386 05/2009 309



Installing and Configuring the CANopen Fieldbus

Programming and diagnostics for the CANopen fieldbus

Explicit Exchanges

Objects (words and bits) associated with the CANopen fieldbus contribute data (for
example: bus operation, slave status, etc.) and additional commands to carry out
advanced programming of the CANopen function.

These objects are exchanged explicitly between the Twido controller and the
CANopen Master module via the expansion bus:

e at the request of the program user by way of the instruction: CAN_CMD (see
"Presentation of the CAN_CMD" instruction below)
e via the debug screen or the animation table.

CANopen Master Reserved Specific System Words

System words reserved in the Twido controller for the TWDNCO1M CANopen
Master module enable you to determine the status of the network: %SW8x (x=1-7)
is reserved for the CANopen master moduled installed at expansion address x on
the Twido bus. Only the first 7 bits of these words are used; they are read-only.

For the Twido Extreme integrated CANopen bus master the reserved specific
system word is always %SW81 (%SW82... %SW87 are unused).

The following table shows the bits used:

System Bit Description
Words
0 Configuration status of CANopen master ( = 1 if
Y%SW8x configuration OK, otherwise 0)
(x=1-7) 1 Operational mode of CANopen master ( = 1 data exchange
is enabled, otherwise 0)
2 System stopped ( = 1 if the Offline mode is enabled,
otherwise 0)
3 CAN_CMD instruction complete ( = 1 if command complete,

otherwise 0 when command is in progress)

4 CAN_CMD instruction error ( = 1 if there is an error in the
instruction, otherwise 0)

Initialization error (= 1)

Loss of message, "power supply related error ( = 1)"

35011386 05/2009

310



Installing and Configuring the CANopen Fieldbus

Example of use (for the CANopen master module installed at expansion address 1
on the Twido bus):

Before using an CAN_CMD instruction, the %SW81:X3 bit must be checked to see
whether an instruction is not in progress: check that %SW81:X3 = 1.

To ascertain whether the instruction has then correctly executed, check that the
%SW81:X4 bit equals 0.

CANopen Slave Reserved Specific System Words

%SW20 to %SW27 are reserved system words that allow you to know the current
state of the 16 CANopen slaves with node addresses ranging from 1 to 16. The
content of these memory words is read-only.

The following table describes system words %SW20 to %SW27:

Node address
System | (slave number)

words Bit Bit

Word content / Description

[15-8] |[7-0]

%SW20 |2 1 When %SW2x takes the following value:

%WSW21 | 4 3 ® =0 => All modules were missing on the CANopen bus
at CANopen master start up“).

%SW22 |6 5 4

e =1=>Unexpected module was present on the network.

%SW23 |8 7 It has signalled itself as "not error free" before it was

%SW24 10 9 removed from the network.

%SW25 |12 1 ® =2=>Node State Operational (module is in operational
state):

%SW26 |14 13 - "error free".

%SW27 |16 15 e =3=>Node State Operational (module is in operational
state):

- "not error free".

® =4 => Node State Preoperational (module is in
preoperational state):
- expected modules only (those declared as expected in
the configuration table);
- module can be set to operational;
- "error free".

e =5 => Node State Preoperational (module is in
preoperational state):
- expected modules only (those declared as expected in
the configuration table);
- module can be set to operational;
- "not error free".

35011386 05/2009 311



Installing and Configuring the CANopen Fieldbus

System
words

Node address
(slave number)

Bit
[15-8]

Bit
[7-0]

Word content / Description

® =6 => Node State Preoperational (module is in
preoperational state):
- expected modules only (those declared as expected in
the configuration table);
- module is present but its current state does not allow
to set it to operational;
- "error free".

e =7 =>Node State Preoperational (module is in
preoperational state):
- expected modules only (those declared as expected in
the configuration table);
- module is present but its current state does not allow
to set it to operational;
- "not error free".

e =8 => Wrong module (a module was detected with
different device identity information):
- "error free".

e =9 => Wrong module (a module was detected with
different device identity information):
- "not error free".

e =10 => Slave configuration error (module has
answered SDO Write request of the SDO command
table with an error confirmation or has not followed the
rules of the SDO protocol):

- "error free".

e =11 => Slave configuration error:
- "not error free".

® =12 => Missing Module / Error Control Timeout / SDO
Timeout (a module that was configured is not available,
has disappeared during operation or does not answer
SDO access):
- "error free".

35011386 05/2009

312



Installing and Configuring the CANopen Fieldbus

Presentation of the CAN

System
words

Node address
(slave number)

Bit
[15-8]

Bit
[7-0]

Word content / Description

® =13 => Missing Module / Error Control Timeout / SDO
Timeout (a module that was configured is not available,
has disappeared during operation or does not answer
SDO access):

- "not error free".(1)

® =14 => Unexpected module (a module was detected
that is not in the configuration table):
- "error free".

® =15 => Unexpected module (a module was detected

that is not in the configuration table):
- "not error free".

NOTE:

1. When %SW2x takes the following value:
e =0, for a slave means that all slaves are missing,
e =13, for a slave means that this slave is missing and at least 1 slave is present

on the CANopen bus.

_CMD Instruction

For each user program, the CAN_CMD instruction allows the user to program his
network and obtain the slave diagnostics. The instruction parameters are passed by
internal words (memory words) %MWx.

The syntax of the instruction is as follows:
CAN_CMD n %MW x : 1

Legend:
Symbol Description
n Expansion address of CANopen master module on the Twido bus (1 to 7).

X

Number of the first internal word (memory word) passed in parameter.

Length of the instruction in number of words (2 or 6).

NOTE: The Master CanOpen Twido doesn’t manage objects like strings but only 8,
16 and 32 bit objects (signed or unsigned).

35011386 05/2009

313



Installing and Configuring the CANopen Fieldbus

Using the CAN_CMD Instruction

The CAN_CMD instruction allows you to program and manage the CANopen
network and to perform diagnostic checks of individual slave devices. Command
parameters are passed via memory words %MWHx.

The following table describes the action of the CAN_CMD instruction according to
the value of the parameters %MW(x) to %MW (x+5) as needed:

%MWXx

%eMWx+1

% MWx+2

%MWx+3

%MWx+4

%MWx+5

Bit | Bit
[15- |[7-0]
8]

Bit | Bit
[15- |[7-0]
8]

Bit |Bit
[15- |[7-0]
8]

Bit | Bit
[15- |[7-0]
8]

Bit |Bit
[15- |[7-0]
8]

Action

0

1

Reset CANopen
communication.

Reset CANopen nodes.

Switch from operational to pre-
operational mode.

Switch to operational mode.

3or4

Node

3 => Start Read SDO
command.
4 => Start Write SDO
command.

Node = 1-16 => Node address

Index

PDO object index.

Sub |Len

Sub = 0-255 => Object sub-
index
Len = Length of data in byte

Data 1

Payload according to the
length field (Len) value

Data 2

Payload according to the
length field (Len) value

Node

Node

Node

Node

Reset CANopen
communication for a node.

Reset CANopen nodes for a
node.

Switch from operational to pre-
operational mode for a node.

Switch to operational mode for
a node.

(1) CAN_CMD available only for:Twido Extreme with firmware version 4.0 or higher and TWDNCO1M CANopen
master module with firmware version 2.0 or higher.

35011386 05/2009

314




Installing and Configuring the CANopen Fieldbus

NOTE: Bus status is updated on each PLC scan. However, the result of the
CAN_CMD bus reading instruction is available only at the end of the following PLC
scan.

Programming Examples for the CAN_CMD Instruction

Example 1:

To force the TWDNCO1M CANopen Master (located at address 1 on the Twido
expansion bus) or the Twido Extreme integrated CANopen bus master to switch to
Init mode:

ID 1

[$MWO := 16#0001]

[$SMW1 := 16#0001]

LD %$SW81:X3 (* If no CAN CMD instruction is in *)

(* progress, then continue *)

[CAN CMD1 3MWO:2] (* To force the CANopen master to *)

(* switch to Init mode *)

LDN %SW81:X4 (* (optional) To know if the CAN CMD *)
(* instruction has been succesfully completed, before ¥*)
(* sending a new one. ¥*)

Example 2:

To read the following variable: SDO_Slave:1_index:24576_sub-index:1_length:4
ID 1

[$MW6 := $SMW4] (* Store the result of the last *)

(* SDO command *)

[SMW7 := $SMW5] (* Store the result of the last SDO *)
(* command¥*)

LD %SW81:X3 (* If there is no CAN CMD instruction ¥*)

(* in progress, then continue*)

[$SMWO := 16#0003]

[$MW1 := 16#0001] (* SDO read to address node 1%)
[$MW2 := 16#6000] (* Access to index number 24576%)
[$MW3 := 16#0104] (* Access to sub-index number 1 *)

(* and length value 4 ¥*)

35011386 05/2009

315



Installing and Configuring the CANopen Fieldbus

[CAN CMD1 %MWO:6] (* Start SDO command*)
Example 3:
To write the following variable: SDO_Slave:1_index:24576_sub-index:1_length:4

ID 1

[$SMWO := 16#0004]

[$MW1 := 16#0001] (* SDO write to address node 1%*)
[$MW2 := 16#6000] (*Access to index number 24576%*)
[$SMW3 := 16#0104] (* Access to sub-index number 1 * )

(* and length value 4 ¥*)

[$MW4 := 16#1234] (* Data 1 value*)
[$SMW5 := 16#1234] (* Data 2 value¥*)
LD $SW81:X3 (* If there is no CAN CMD instruction ¥*)

(* in progress, then continue *)

[CAN CMD1 %MWO:6] (* Start SDO command*)

Example 4:

To force the Twido Extreme integrated CANopen bus master to switch to Init mode:

LD 1

[$SMWO := 16#0005] (*Command type 5 to 8%*)

[$MW1 := 16#0001] (*Node address*)

LD %SW81:X3 (*If no CAN CMD instruction is in *)

(* progress, then continue *)
[CAN_CMD1 3MWO:2] (* To force the Twido Extreme *)

(* integrated CANopen bus master to switch to Init mode¥*)

35011386 05/2009 316



Installing and Configuring the CANopen Fieldbus

CANopen Hot Swap for Twido Controllers

CANopen Hot Swap
The CANopen network with a Twido Controller and CANopen master TWDNCO1M
(with firmware version 2.0 or higher) supports hot swap. The Twido Extreme also
supports hot swap. Hot swap means that you can disconnect and reconnect a
CANopen slave without switching off/on the master (or without disconnecting it from
the PLC in the case of a Twido Extreme controller).

Hot Swap Compatibility
The hot swap functionality is available only if node supervision (Guard Time or
HeartBeat) has been configured. For more details on how to configure node
supervision see Configuring the Network Management Parameters, page 299.

35011386 05/2009 317



Installing and Configuring the

CANJ1939 Fieldbus

11

Subject of this Chapter

This chapter describes how to install and configure a CANJ1939 Fieldbus with a

Twido Extreme TWDLEDCK1 base controller.

What's in this Chapter?

This chapter contains the following sections:

Section Topic Page
11.1 CANJ1939 Fieldbus Overview 319
11.2 Implementing the CANJ1939 Bus 326

35011386 05/2009

318




Installing and Configuring the CANJ1939 Fieldbus

11.1 CANJ1939 Fieldbus Overview

Subject of this Section

This section provides general information on the CANJ1939 fieldbus and introduces
CANJ1939-specific terminology that will be used throughout the remainder of this
chapter.

What's in this Section?
This section contains the following topics:

Topic Page
CANJ1939 Knowledge Base 320
CANJ19139 Parameter Group Number and Suspect Parameter Number 322
CANJ1939 Identifier 323
Communication on a CANJ1939 Network 325

319 35011386 05/2009



Installing and Configuring the CANJ1939 Fieldbus

CANJ1939 Knowledge Base

Introduction

The following section provides basic information about CANJ1939 network
communications.

Applications
CANJ1939 is a high layer protocol for the CAN fieldbus developed by the SAE
(Society of Automotive Engineers) for equipment used in industries ranging from
agriculture, construction, and fire/rescue to forestry, materials handling, and on- and
off-highway equipment.

Characteristics

CANJ1939 is a high speed communications network designed to support real-time
closed loop control functions between electronic devices which may be physically
distributed throughout the vehicle.

CANJ1939 is capable of performing all of the functions of J1708/J1587 as well as
the control system support and any one application may utilize one or the other or
both of these networks.

NOTE: JI708/JI587 is an older, widely used, network intended to provide simple
information exchange, including diagnostic data, between electronic devices.

Electronic Control Unit (ECU)

Electronic Control Unit (ECU) is a computer based electronic assembly from which
CANJ1939 messages may be sent or received.

In the remainder of this document ECUs are called CANJ1939 elements.

Parameter Group Number (PGN)

In the CANJ1939 specification, similar or related parameters (signals) are grouped
together into a Parameter Group (PG). Each Parameter Group can be identified via
a unique number: its Parameter Group Number (PGN) (see Parameter Group
Number (PGN), page 322).

35011386 05/2009 320



Installing and Configuring the CANJ1939 Fieldbus

Suspect Parameter Number (SPN)

A Suspect Parameter Number (SPN) is used to identify a particular parameter
(signal) associated with a CANJ1939 element (see Suspect Parameter Number

(SPN), page 322).

An SPN is a unique 19-bit number that is part of a PGN.

NOTE: A detailed
MS Excel spreads

Communication Methods

list of all SPNs and PGNs is provided by the SAE committee in a
heet (see http://www.sae.org/).

Three core communication methods exist within CANJ1939:
e Peer-to-peer communications (see page 325). the message is directed to a
particular device, a specific destination address is included within the identifier of

the message.

e Broadcast Communications (see page 325): the message is transmitted on the
network without directing it to a specific destination. This permits any device to
use the data without requiring additional request messages.

e Proprietary Communications: not used in Twido Extreme

Additional Sources
Form more details

about CANJ1939, please refer to the following SAE literature:

Document
Reference
Number

Document Name

SAE J1939

Recommended Practice for a Serial Control and Communications
Vehicle Network

SAE J1939-11

Physical Layer—250K Bits/s, Shielded Twisted Pair

SAE J1939-13

Off-Board Diagnostic Connector

SAE J1939-15

Reduced Physical Layer, 250K Bits/s, Un-Shielded Twisted Pair (UTP)

SAE J1939-21

Data Link Layer

SAE J1939-31

Network Layer

SAE J1939-71

Vehicle Application Layer

SAE J1939-73

Application Layer - Diagnostics

SAE J1939-81

Network Management Protocol

You may also refe

r to the following Internet sites:

e The CAN In Automation (CIA) web site: http://www.can-cia.org/
e The Society of Automotive Engineers (SAE) web site: http://www.sae.org/

321

35011386 05/2009




Installing and Configuring the CANJ1939 Fieldbus

CANJ19139 Parameter Group Number and Suspect Parameter Number

Introduction

This section presents information relating to the Parameter Group Number and
Suspect Parameter Number usage on a CANJ1939 network.

Parameter Group (PG)

Parameter Group (PG) is a collection of parameters that are conveyed in a
CANJ1939 message.

Parameter Groups include:
commands

data

requests

acknowledgments
negative-acknowledgments

The PG is not dependent on the source address field: any source is allowed to send
any PG.

Parameter Group Number (PGN)

The Parameter Group Number (PGN) is a 24-bit representation that identifies a
particular PG.

The PGN structure permits a total of up to 8672 different parameter groups. With the
transmission of a parameter group, the PGN is coded in the CAN identifier.

Suspect Parameter Number (SPN)

Examples of SPNs

A Suspect Parameter Number (SPN) is a 19-bit number used to identify a particular
element, component, or parameter associated with an ECU (CANJ1939 element).
This capability is especially useful for diagnostics, permitting an ECU which has
detected an issue associated with a particular component, such as a sensor, to
transmit a message identifying the inoperative component. SPNs are assigned by
the SAE (Society of Automotive Engineers) Committee. The first 511 SPNs are
reserved and will be later assigned to correspond to the exact same number as the
Parameter Identifier (PID) of J1587.

Engine coolant temperature
Fuel temperature

Engine oil temperature

Turbo oil temperature

Engine intercooler temperature

35011386 05/2009

322



Installing and Configuring the CANJ1939 Fieldbus

CANJ1939 Identifier

Introduction

CANJ1939 provides a complete network definition using the 29-bit identifier (CAN
Extended Frame) defined within the CAN protocol.

NOTE: CANJ1939 also enables 11-bit identifier (CAN Standard Frame) devices to
be used within the same network, defining all messages as proprietary, permitting
both device types to coexist without interference.

CANJ1939 Identifier Description

The CANJ1939 identifier's 29-bit frame structure is described as follows:

= | MOn

PRIORITY |R | B | PDU FORMAT (PF)

AN
mg—
-1

cantd)|  PDUSPECIFIC (PS) SOURCE ADDRESS

2‘3|4 56 7‘9|9‘10‘11‘12

o

3

-

3[14 15‘16 17|19‘19‘20‘21|22|23‘24 25‘2s|27|29‘29‘30‘31|32

Priority

Reserved (R)

Data Page (DP)

The following sections describe the various parts that compose the CANJ1939
frame.

The Priority field (3 bits) is used to determine message priority during the arbitration

process:

e A value of 000 has the highest priority. Higher priority messages would typically
be used for high speed control messages.

o Avalue of 111 has the lowest priority. Lower priority messages would be used for
data which is not time critical.

The R bit is reserved. This default will permit future use of the bit for other purposes
as defined by the SAE (Society of Automotive Engineers) committee.

The DP bit is used as a page selector:

e Page 0 contains all the messages which are presently being defined.
e Page 1 is reserved for future use. It is designed to provide additional expansion
capacity once page 0 memory space is used up.

323

35011386 05/2009



Installing and Configuring the CANJ1939 Fieldbus

PDU Format (PF)

The PF field (8 bits) identifies one of two message formats that can be transmitted:
e If 0 < PF <239, then PDU1 format is used for peer-to-peer (see page 325)
communication methods.
e |f 240 < PF <255, then PDU2 format is used for broadcast communication
(see page 325) methods.

NOTE: PDU stands for Protocol Data Unit.

PDU Specific (PS)
The PS field (8 bits) is dependent on the value of the PDU:
e If PDU1 format is used then the PS field contains a Destination Address (DA). 240
Parameter Groups are provided in each data page of PDU1 format
e [f PDU2 format is used then the PS field contains a Group Extension (GE). The
Group Extension field, in conjunction with the four least significant bits of the PDU
Format field, provide for 4096 Parameter Groups for each Data Page (DP)

Source Address

The Source Address field (8 bits) contains the unique address of the ECU
(CANJ1939 element) transmitting the message.

Other Fields

e SOF (Start Of Frame): The initial bit in a CAN frame used only to indicate the
beginning of the frame.

e SRR (Substitute Remote Request): This bit is entirely defined and controlled by
CAN and therefore not described or modified by CANJ1939.

e |DE (Identifier Extension Bit): This bit is entirely defined and controlled by CAN
and therefore not described or modified by CANJ1939.

e RTR (Remote Transmission Request): This feature of CAN is not used in
CANJ1939.

35011386 05/2009 324



Installing and Configuring the CANJ1939 Fieldbus

Communication on a CANJ1939 Network

Overview

This section provides details about collision detection, address assignment and
communication methods on a CANJ1939 network.

Collision Detection

CANJ1939 uses the CAN protocol which permits any device to transmit a message
on the network when the bus is idle.

Collisions are avoided due to the arbitration process that occurs while the identifier
is transmitted (using a non-destructive arbitration scheme). Arbitration, permits high
priority messages to get through with low latency (delay) times because there is
equal access to the network by any device.

Address Assignment

For a given network, each network element address must be unique (0 to 254, 255
available for Broadcast). The PGNs are not Source Address dependent. Therefore
any CANJ1939 element can transmit any message.

Broadcast

Most messages used on the CANJ1939 network are of the Broadcast type. This
means that the data are transmitted over the network without directing it to a specific
destination. This permits any device to use those data without requiring additional
request messages. This also permits future software revisions to easily
accommodate new devices (address assignments).

Peer to Peer

When a message must be directed to a particular device, a specific destination
address can be included within the identifier of the message.

325 35011386 05/2009



Installing and Configuring the CANJ1939 Fieldbus

11.2

Implementing the CANJ1939 Bus

Introduction

This section describes how to implement a CANJ1939 fieldbus using the
Twido Extreme TWDLEDCK1 base controller.

What's in this Section?

This section contains the following topics:

Topic Page
CANJ1939 Implementation Overview 327
Hardware Setup 328
CANJ1939 Configuration Methodology 329
CANJ1939 Configuration Dialog Boxes (Element, Network, Port) 332
Creating or Deleting CANJ1939 Transmit/Receive Objects 335
Viewing CANJ1939 Transmit/Receive objects 343
CANJ1939 Broadcast Configuration 346
CANJ1939 Peer-to Peer Configuration 348
CANJ1939 Configuration in Expert Mode 350
CANJ1939 Input/Output Objects 352
Request a PGN Output 356

35011386 05/2009

326




Installing and Configuring the CANJ1939 Fieldbus

CANJ1939 Implementation Overview

Hardware and Software Requirements
The following hardware and software is required to implement a CANJ1939 bus on

your Twido PLC system:

Hardware

Requirements

Twido Extreme PLC base

Extreme base
e TWDLEDCK1

CANJ1939 connectors and
cables

See Twido Extreme Hardware Guide.

Programming cables for the
Twido Extreme PLC

PC to controller programming cables: USB
® TSX CUSB485 and TWD XCAFJ010

Programming cable for the
Twido Extreme PLC

PC to controller programming cable: serial
e VW3 A8106

BlueTooth dongle - to enable
wireless transfer from PC to
PLC

PLC BlueTooth adapter:
e VW3 A8114

Software

Requirements

Twido PLC configuration
software

TwidoSuite V2.0 or higher

CANJ1939 Implementation Procedure

The following procedure will guide you through the installation, configuration and

use of your CANJ1939 network:

Step Description

Hardware Setup

CANJ1939 Configuration Methodology

Configuration Dialog Boxes

Creation of Transmit/Receive Objects

Broadcast Configuration

Peer-to-Peer Configuration

Expert Mode Configuration

OIN| O D] =

CANJ1939 I/0 Objects

9 Using SPN Requests

These steps are detailed in the following sections.

327

35011386 05/2009




Installing and Configuring the CANJ1939 Fieldbus

Hardware Setup

Installing the Twido Extreme TWDLEDCK1 PLC
To install the Twido Extreme, follow these steps:

Step Action Description
1 Mounting the Install the TWDLEDCK1 Twido Extreme (horizontally
Twido Extreme or vertically) using the mounting holes. For more
TWDLEDCK1 details, see .
2 | CANJ1939 Wiring and | Connect power supply and devices using the 70-pin
Connections connector. For wiring details, refer to .

35011386 05/2009 328



Installing and Configuring the CANJ1939 Fieldbus

CANJ1939 Configuration Methodology

Overview

This section describes the general methodology for configuring the CANJ1939 bus.
Further details are provided in subsequent sections.

CANJ1939 configuration is performed in the Describe window of TwidoSuite. The
results of your configuration may be then viewed in Program — Configure the
Hardware, Module Configuration CANJ1939 tab (see Viewing CANJ1939
Transmit/Receive objects, page 343).

NOTE:

1. CANJ1939 configuration can only be performed in Offline mode.
2. No changes can be made when the Twido Extreme is connected to the PC. Only

the network name, element names and "Expert Mode" check box can be modified
in Online mode.

329

35011386 05/2009



Installing and Configuring the CANJ1939 Fieldbus

CANJ1939 Configuration Methodology

The following table describes the different software implementation phases for a
CANJ1939 network. For a more detailed description of how to create and configure
a CANJ1939 network in TwidoSuite (see ).

Mode

Phase

Description

Local

Hardware selection

Create a CANJ1939 network, in the graphical
workspace of the Describe window of TwidoSuite,
by selecting a Twido Extreme TWDLEDCK1 base
controller and the desired number of CANJ1939
devices from the Product Catalog.

Configuring the
CANJ1939 network

Configure the CANJ1939 network in the Describe

window by:

® allocating a unique address (0 to 254, 255 is
available for Broadcast) (2) to each CANJ1939
element. A single CANJ1939 device may have
multiple addresses. In which case several
elements with the same name should be created
in TwidoSuite but with different addresses. For
further details of these dialog boxes (see
CANJ1939 Configuration Dialog Boxes
(Element, Network, Port), page 332),

® connecting the elements together in the
graphical workspace (see ),

e defining appropriate (receive or transmit)
message objects (maximum 8 bytes of data) for
each relevant CANJ1939 element. For further
details see Creating or Deleting CANJ1939
Transmit/Receive Objects, page 335.

Viewing CANJ1939
message objects

Previously defined message objects may be viewed
in the Program — Configure — Configure the
Hardware window (Module Configuration pane,
select CANJ1939 tab).

For further details of this configuration pane (see
Viewing CANJ1939 Transmit/Receive objects,
page 343),

Renaming message
objects (optional)

Message objects have predefined descriptive
names. You can, however, edit these names
(maximum 32 characters) in the Program —
Configure — Configure the Hardware window
(Module Configuration pane, select CANJ1939
tab).

Programming

Programming the CANJ1939 function.

35011386 05/2009

330




Installing and Configuring the CANJ1939 Fieldbus

Mode Phase Description
Online Transfer Transfer of the application to the PLC.
Debugging Debugging the application with the help of animation
and monitoring screens
NOTE:

1. A CANJ1939 device is represented in TwidoSuite by a CANJ1939 element (or
elements). A device (or element) is also known as an Electronic Control Unit
(ECU) (see Electronic Control Unit (ECU), page 320).

2. Element addresses are restricted to values 0to 254. See CANJ1939 Knowledge
Base, page 320

331

35011386 05/2009




Installing and Configuring the CANJ1939 Fieldbus

CANJ1939 Configuration Dialog Boxes (Element, Network, Port)

Overview
This section details the CANJ1939 Configuration Dialog boxes used in the Describe
window of TwidoSuite.

Configuring a CANJ1939 Element/Network/Port

The following table shows how to configure a CANJ1939 element, network or port
that you have previously created and details the corresponding dialog box fields:

Step Action

1 In the Describe window, roll the mouse over the element, network or port until configuration (screwdriver)
cursor appears, double-click (or click right and choose "configure").
Result: one of the following configuration dialog box opens, see steps 2, 3 and 4.

2 | Port Configuration dialog box

Configuration X

Port
Type CANJ1939 X Address 234 v

Add an object ] |

T Expert Mode
List of objects on transmission

# Priority Periodic mode Period  Descr.
0 AJC High Pressure Fan Switch 5 [§] 100  See |

List of objects on reception
# Source address  Priorit Hourglass mode  Period Descr.

Manufacturer's code 0 Processor instance 0

Fele flas Function instance 0
Automobile system 0
Industrial group 5 Autormobile system instance 0
Cancel | OK ]

35011386 05/2009 332



Installing and Configuring the CANJ1939 Fieldbus

Step

Action

3

Element Configuration dialog box

Configuration

Element

MName

Element 1

Protocol

Address

Type CANJ1939 ¥ 1 ¥
Add an object I

[T Expert Mode

List of objects on transmission

#

Priority  Periodic mode

List of objects on reception

#

Priority Hourglass mode  Period

Period

Descr

Descr

Cancel |

Network Configuration dialog box

Configuration

Network

Narne

my network 1

Type

Cancel | OK

333

35011386 05/2009




Installing and Configuring the CANJ1939 Fieldbus

Step Action
5 | The following fields can be modified (optional):

o Name: the default name is "Element 1" (for element) and "My network 1"(for network) and this field is
limited to 32 characters.

® Address: the default value is 0. Element addresses are restricted to values 0 to 255.

o Expert Mode check box: when this is selected the PGN/SPN numbers are displayed. By default this
check box is cleared and even if you leave this box selected when you close this dialog box the default
value (cleared) is reinstated when the dialog box is reopened.

e #: this takes values from 0 to 31 and provides a simple identification number for different types of
messages (see Parameter Group Number (PGN), page 320). If two or more message objects come from
the same parameter group, and thus share the same #, changing the # value for one object will
automatically apply this value to the others. The table is also re-ordered to always display the objects in
ascending # order.

e Priority: this takes values from 0 to 7(0 being the highest priority). These values are preset according to
the particular message object (SPN) (see Suspect Parameter Number (SPN), page 321). These can be
edited, however, and changing the priority for one message object results in attributing the same priority
to all message objects that share the same #.

e Periodic mode (transmit objects) check box: when this is selected the message is sent periodically with
the period (in ms) that you indicate in the Period field. If the periodic mode check box is cleared the period
field cannot be edited. Changing the periodic mode for one message object results in applying the same
mode to all message objects that share the same #.

o Hourglass mode(receive objects) check box: when this is selected the time (in ms) indicated in the
Period field provides a time out period. (If the Twido Extreme does not receive a message after this time
out period a Parameter Group error occurs.) System Words %SW33 to %SW40 are updated.

o Period: (in ms) this takes values from 10 to 60000 (default value is 100) and can only be edited if the
corresponding periodic mode (transmit objects) or Time out (receive objects) check box is selected.

® Descr: press this button to display a description of the message object (SPN).

e Processor instance: () indicates to the CANJ1939 element which PLC will send it messages.
Authorized values are 0 and 1.

e Function instance: (") particular occurrence of a given function in an automobile system and given
network. If only one instance of a certain Function exists in a network, then this field must be set to ‘0’ to
define it as the first instance.

e Automobile system instance: () particular occurrence of a given vehicle system in a given network. If
only one instance of a certain automobile system exists in a network, then this field must be set to ‘0’ to
define it as the first instance.

Note: (DAl these values are specified in SAE J1939.

6 | The following fields are read-only:

e Manufacturer’s code: () indicates the manufacturer in charge of the production of the electronic control
module.

e Function: (" indicates the primary function of the Controller Application.

e Automobile system: (") a group of functions in a network.

o Industrial group: Mindicates an industry group

Note: (DAl these values are specified in SAE J1939.

7 | Click Cancel to discard or OK to apply the changes and close the dialog box.

35011386 05/2009 334




Installing and Configuring the CANJ1939 Fieldbus

Creating or Deleting CANJ1939 Transmit/Receive Objects

Overview

CANJ1939 messages can be either transmit or receive objects. These are created
via the appropriate (element or port) configuration dialog box accessible from the
Describe window. A transmit object is an object transmitted by the Twido Extreme
and a receive object is one received by the Twido Extreme.

This section explains how to create and delete transmit/receive objects. Broadcast
messages are defined by adding objects on a port. Peer-to-peer messages are
defined by adding objects to the appropriate element(s). See Communication on a
CANJ1939 Network, page 325.

NOTE: In TwidoSuite you can configure the CANJ1939 network for messages
(broadcast or peer-to-peer) that are sent by the Twido Extreme PLC. TwidoSuite
can only be used to configure Twido Extreme controllers. Other non-Twido products
connected on the CANJ1939 network cannot be configured using TwidoSuite.

335

35011386 05/2009



Installing and Configuring the CANJ1939 Fieldbus

Creating Transmit/Receive Objects

The following steps show how to create transmit/receive objects.

Step

Action

1

In the Describe window, roll the mouse over appropriate element (for peer to peer) or port (for broadcast)
until configuration (screwdriver) cursor appears, double-click (or click right and choose "configure") to

open the configuration dialog box.
Result: the following Configuration dialog box opens (port example).

Configuration

Port

Type CAMJ1939 ¥

Address 734 R 4

Add an object |

O Expert Mode

List of objects on transmission
#

Priority Penodic mode  Period  Descr.

List of objects on reception

# Source address

Priorit: Hourglass mode  Period Descr.

Manufacturer's code 0 Processor instance 0
Function 1129 A PO
Function instance [l
Automobile system :
Industrial group 5 Automobile system instance 0
Cancel | QK ]
——

Note:This example is for a broadcast message. Peer to peer messages are created in the same way but

by configuring an element.

For example of element Configuration dialog boxes and more detailed information concerning their fields
see CANJ1939 Configuration Dialog Boxes (Element, Network, Port), page 332.

35011386 05/2009

336



Installing and Configuring the CANJ1939 Fieldbus

Step

Action

2

Click "Add an object".
Result: the following dialog box opens:

Configuration

Adding an object

User |Receive ¥ Source address | All ¥

Object | AfC High Pressure Fan Switch

Description

Switch signal which indicates that the pressure in the coalant circuit of an air conditioning =]
system is high and the fan may be engaged

00 - Pressure normal

01 - Pressure high, fan may be engaged
10- Error

11 - Mot available

Cancel | oK |

Select type "Receive" or "Transmit" and choose the desired message object from the Type list. (This
Type list may be scrolled with the scroll bar or by typing the first three letters of the object name.

If your chosen object has already been created on another CANJ1939 element, port or network (with the
same type Receive/Transmit), you will receive an error message and be prevented from adding this
object.

(Selecting the Expert Mode check box reveals the corresponding PGNs/SPNs.(”)

The Type of object (Receive or Transmit) will depend on whether you are configuring an element or port
as well as the type of messaging you require (broadcast or peer-to-peer). See Message Object Summary
(see page 339) below.

In the "source address" field you can choose to deal with the desired message object from All
CANJ1939 elements or from just one CANJ1939 element by selecting its address. The "source
address" field is not available if "Transmit" is selected in the Type list.

(1) CANJ1939 Message objects are grouped into different types (or Parameter Groups). Each message
object, therefore, is associated with a hexadecimal Parameter Group Number (PGN) and also has its
own individual hexadecimal identity number known as a Suspect Parameter Number (SPN). Thus a
message object is often referred to by its SPN and several SPNs are related to the same PGN. For
further information see CANJ1939 Configuration in Expert Mode, page 350.

337

35011386 05/2009




Installing and Configuring the CANJ1939 Fieldbus

Step Action
4 Click Cancel to abandon or OK to add the selected object and close the "Add an Object" Configuration
dialog box.
Result: the (element or port) Configuration dialog box displays the chosen message objects.
Example:
Configuration
Port
Type CANJ1938 ¥ Address | o hd
Add an object | |
[ Expert Mode
List of objects on transmissian:
# Priority  Petiodic _mode  Period Descr
0 6 5l 100
1 Engine Starter Mode 5] r 100
2 Front Axle Speed 5] =) 100
List of objects on reception
# Priority Hourglass Mode  Period Descr
0 Engine Cylinder 1 Combustion Status 5} 0 100
1 Engine Cylinder 1 Knock Level 4] =) 100
2 Engine Throttle Actuatar 1 Contral Command [+ r 100
3 Level Contral Mode & [ 100 J.EP_[
Manufacturer's code 0 Processor instance ‘g
FUNEIER iz Function instance 0
Automabile system 0
Industrial group B Autormobile system instance 0
Cancel | QK |
[
5 Repeat steps 2 to 4 for each message object you wish to create for this element or port.
No more than 32 indexes of the same type (transmit or receive) can be added on an element or port. If
you try to exceed this, an error message will appear and you will not be able to add a new object.
6 If necessary, resolve conflicts by deleting objects.

If the total size of your chosen message objects (SPNs) exceeds the memory limitations of TwidoSuite
(this will be depend on the SPNs chosen, as these differ in size), you will receive the error message "too
many SPNs defined on the network" and be prompted to delete some objects @,

@ you try to add a transmit (receive) object (which exceeds 8 bytes) and there is already another
transmit (receive) object which comes from the same parameter group (on an element or port), you will
receive a conflict error message and you will be prompted to "Create" (default option) a new instance of
this parameter group which includes your message object. You will also be given the choice to "Replace"
(which deletes the conflicting message object of the same parameter group) or "Cancel" (to discard
changes).

35011386 05/2009 338



Installing and Configuring the CANJ1939 Fieldbus

Step Action

7 (Optional) You can manually edit certain fields in the (element or port) Configuration dialog box such as
#, priority, periodic mode (for detailed explanation of these fields, see CANJ1939 Configuration Dialog
Boxes (Element, Network, Port), page 332
If necessary, manually edit the # fields to assign new indexes for the created object groups (PGNSs).

Make sure that the created message objects have consecutive # indexes. For more information on the
# field, see Message Object Indexes below.

8 Click Cancel to discard changes or click OK to save changes and close the Configuration dialog box.

Message Object Summary

This table summarizes what it means to add transmit/receive objects on the
CANJ1939 or on the CANJ1939 port.

Transmit object added

Receive object added

on an Element
(Peer-to-Peer)

Twido Extreme sends a message to

an element. (This enables the
element to receive this message)

Twido Extreme will deal with this
message if this element sends it

on the CANJ1939
Port
(Broadcast)

Twido Extreme sends a message to

an element configured to receive it
(i.e., the element has the same
message object declared as a
transmit object)

Twido Extreme will deal with this
message if it appears on the
network

Note: you can configure

Twido Extreme to deal with this
message from All CANJ1939
elements or from just one
CANJ1939 element

Messages sent by other devices cannot be configured in TwidoSuite.

339

35011386 05/2009




Installing and Configuring the CANJ1939 Fieldbus

Message Object Indexes

The # field is a TwidoSuite index for the created object groups (PGNs) and takes
values from 0 to 31. If two or more message objects come from the same parameter
group, they will share the same #. Thus changing the # value for one object will
automatically apply this value to the others. The table is also re-ordered to always
display the objects in ascending # order. It is not possible to create a message object
with an # index that has already been used by another element or port (TwidoSuite
produces an error message in such cases). To resolve this, you can manually edit
the # field and assign a new index number.

Note: To ensure that all the added SPNs are later accessible in the Program —
Configure — Configure the Hardware (Module Configuration pane, CANJ1939
tab) window, make sure that the created message objects have consecutive #
indexes. For example if you add 6 SPNs, they are automatically numbered #0 to #5.
If you then delete the SPN with index #3, the SPNs #4 and #5 will not be visible in
the configuration screen. To avoid this, manually edit the indexes #4 and #5
replacing them with indexes #3 and #4 to ensure a consecutive index list #0 to #4.

35011386 05/2009

340



Installing and Configuring the CANJ1939 Fieldbus

Deleting Transmit/Receive Objects

The following steps show how to delete transmit/receive objects.

Step

Action

1

In the Describe window, roll the mouse over appropriate element or port until
configuration (screwdriver) cursor appears, double click (or click right and
choose "configure") to open the configuration dialog box which displays
previously created transmit/receive objects

Result: the following dialog box opens:

Configuration

Element

Type CANI1E30 ¥ Address [ .

Add an object I Delete an object ||

O Expert Mode

List of objects on transmission

# Priority Periodic mode Period _ Descr.
0 Engine Requested SpeadiSpeed Limit 6 - 100 See

List of objects on reception

# Priority Hourglass modePeriod _ Descr
0 Adjust day 6 [ 100 weSeen]
1 8 O 100 _See ]

Cancel | QK |

Click the receive/transmit object that you want to delete and click "Delete an
object" or press delete on the keyboard.

(Selecting the Expert Mode check box reveals the corresponding PGNs/SPNs
(1).

(1) CANJ1939 Message objects are grouped into different types (or Parameter
Groups). Each message object, therefore, is associated with a hexadecimal
Parameter Group Number (PGN) and also has its own individual hexadecimal
identity number known as a Suspect Parameter Number (SPN). Thus a
message object is often referred to by its SPN and several SPNs are related to
the same PGN. For further information see CANJ1939 Configuration in Expert
Mode, page 350.

Repeat steps 1 and 2 for each message object you wish to delete.

341

35011386 05/2009



Installing and Configuring the CANJ1939 Fieldbus

Step

Action

After deleting message objects always make sure that the resulting indexes #
are consecutive. This will ensure that all SPNs are later accessible in the
Program — Configure — Configure the Hardware (Module Configuration
pane, CANJ1939 tab) window.

For example, if you add 6 SPNs, they are automatically numbered #0 to #5. If
you then delete the SPN with index #3, the SPNs #4 and #5 will not be visible
in the configuration screen. To avoid this, manually edit the indexes #4 and #5
replacing them with indexes #3 and #4 to ensure a consecutive index list #0 to
#4.

Click Cancel to discard or OK to delete the selected object (s) and close the
Configuration dialog box.

35011386 05/2009

342



Installing and Configuring the CANJ1939 Fieldbus

Viewing CANJ1939 Transmit/Receive objects

Overview

This section explains how to view previously defined CANJ1939 message objects in
the Program — Configure — Configure the Hardware window (Module
Configuration pane, select CANJ1939 tab) of TwidoSuite and details the fields
found in this pane.

NOTE: No actual configuration may be done in this window.

See (CANJ1939 Configuration Methodology, page 329) for general configuration
information and see Creating or Deleting CANJ1939 Transmit/Receive Objects,
page 335 to add and delete message objects.

343

35011386 05/2009



Installing and Configuring the CANJ1939 Fieldbus

Viewing Transmit/Receive Objects

Selecting Program — Configure — Configure the Hardware window (Module
Configuration pane, CANJ1939 tab) displays previously created transmit/receive
objects as shown in the following figure.

Telemecanique | 7 = gl
@ ?/‘ Iy projest \)E \_);
\_l& ‘_( ! ‘_f e i S
1 b
- A o g .
0
Configurs
theHardware
Configure
the data
Canfigure
the behavior
Defing
the Protections
Description of the module Reference number | TWDLECK1 Address 1} ﬂ ﬂ
Description Extrerne base controller 12-24% DC, 22 inputs, 19 transistor outputs, 7 ;I
analog inputs, 2 PWWh inputs, 1 CANopen master, 1 CANJ1939 bus
El
Module configuration. ApEh: I Tancel I
inputs | Outputs [ CAN J1939 | GANopen |
|Used ‘ Address | Symbol ‘ Mame Offset | Size ‘ Resolution
T %hweooo ENGINE_RATED_SPEED_RO Engine Rated Speed 0 16 0.125 rprvbit
T %hWweoi0 ENGINECYUNDERTKNOCKLEY  Engine Cylinder 1 Knock Level 0 8 1 %lbit
T %hwe.20 ENGINTHROTACTUAICONTR Engine Throttle Actual 1 Control Command 0 16 0.0025%/bit
[T %CWCDOD  ENGINEACTUALIGNITIONTIMI Engine Actual Ignition Timing -200 16 1128 degrbit
[T %CWwCD20 ENGINEOQILFILTERDIFFERPRE Engine Oil Filter Differential Pressure 1] 8 0.5 kPa/hit

7]
B

SO

TA Toidsi -
NOTE: To ensure that all previously created message objects appear in this pane
the message objects must be indexed consecutively in the configuration dialog
box used for Creating or Deleting CANJ1939 Transmit/Receive Objects

(see page 340) accessible from the Describe window.

Only the symbol field can be edited in this pane. If you choose to modify this field
you will be asked if you wish to apply these changes when you leave this window. If
an object with a modified symbol is later deleted, the symbol modification is not
saved.

35011386 05/2009 344



Installing and Configuring the CANJ1939 Fieldbus

For more information concerning the address field see CANJ1939 Input/Output
Objects, page 352.

If an SPN is smaller than 8 bits, ":Xi" is appended to the address to provide the
starting position of the SPN in the word.

345 35011386 05/2009



Installing and Configuring the CANJ1939 Fieldbus

CANJ1939 Broadcast Configuration

Overview

This section describes broadcast configuration in a CANJ1939 network.

Broadcast Messages

In a CANJ1939 network each device (element) has at least one address. Most
messages, however, are broadcast, and, therefore not directed to a specific
destination address.

CANJ1939 Messages consist of a 29-bit identifier (see CANJ1939 Identifier,

page 323 for more details) which defines the message priority, the sender and what
data is contained. Broadcast messages differ in this identifier by a field containing a
Group Extension which indicates that the message must be broadcast to all network
elements and not to a particular address. Broadcast message objects are also
referred to as PDU2 type objects (see CANJ1939 Identifier, page 323).

Broadcast messages are created in TwidoSuite by adding message objects on the
port in the Describe window of TwidoSuite.

Broadcast Messages Transmitted by Twido Extreme

The table below shows how to create a CANJ1939 message that will be broadcast
by the Twido Extreme to all network devices.

Step Action
1 Create and configure your CANJ1939 network in the Describe window of
TwidoSuite.
See and .
2 Add the desired Transmit object(s) to the port. This will be broadcast to all

elements on the network (see Creating or Deleting CANJ1939
Transmit/Receive Objects, page 335). This enables any device to use the data
contained in this message.

3 Open the Program — Configure — Configure the Hardware window
(Module Configuration pane, select CANJ1939 tab) window to display the
message objects that you have configured in the previous step

See Viewing CANJ1939 Transmit/Receive objects, page 343.

35011386 05/2009

346



Installing and Configuring the CANJ1939 Fieldbus

Broadcast Messages Received by Twido Extreme

Twido Extreme can be configured to receive messages that are broadcast on the
CANJ1939 network. TwidoSuite can only be used to configure Twido Extreme
controllers. Other non-Twido products connected on the CANJ1939 network cannot
be configured using TwidoSuite. The table below shows how to configure the
Twido Extreme to receive messages that will be broadcast by the CANJ1939

element.
Step Action

1 Create and configure the CANJ1939 network in the Describe window of
TwidoSuite.
See and .

2 Add the desired Receive object(s) to the port (see ). This will be received by
the Twido Extreme if it is broadcast on the network.
Note: You can configure Twido Extreme to deal with message from All
CANJ1939 elements or from just one CANJ1939 element.
SeeCreating or Deleting CANJ1939 Transmit/Receive Objects, page 335.

3 Open the Program — Configure — Configure the Hardware window

(Module Configuration pane, select CANJ1939 tab) window to display the
message objects that you have configured in the previous step
See Viewing CANJ1939 Transmit/Receive objects, page 343.

347

35011386 05/2009



Installing and Configuring the CANJ1939 Fieldbus

CANJ1939 Peer-to Peer Configuration

Overview

This section describes Peer-to-Peer configuration in a CANJ1939 network.

Peer-to-Peer Messages

Peer-to-Peer messages are defined in CANJ1939 by a destination address field in
the CANJ1939 29-bit identifier. Peer-to-Peer message objects are also referred to
as PDU1 type objects (see CAN identifier section CANJ1939 Identifier, page 323 for
more details).

Peer-to-Peer messages are created in TwidoSuite by adding message objects on
the element in the Describe window of TwidoSuite.

Peer-to-Peer Messages Transmitted by Twido Extreme Defined on an Element

The table below shows how to create a CANJ1939 message that will be sent by the
Twido Extreme to a specific address.

Step

Action

1

Create and configure your CANJ1939 network in the Describe window of
TwidoSuite.
See and .

Add the desired Transmit object(s) to the element (see Creating or Deleting
CANJ1939 Transmit/Receive Objects, page 335). This message will be sent
by the Twido Extreme. This enables this element to receive this message
when it is transmit by the Twido Extreme.

Open the Program — Configure — Configure the Hardware window
(Module Configuration pane, select CANJ1939 tab) window to display the
message objects that you have configured in the previous step

See Viewing CANJ1939 Transmit/Receive objects, page 343.

35011386 05/2009

348



Installing and Configuring the CANJ1939 Fieldbus

Peer-to-Peer Messages Received by Twido Extreme Defined on an Element

Twido Extreme can be configured to receive messages that are sent by another
device (Peer-to-Peer) on the CANJ1939 network. TwidoSuite can only be used to
configure Twido Extreme controllers. Other non-Twido products connected on the
CANJ1939 network cannot be configured using TwidoSuite. The table below shows
how to configure the Twido Extreme to receive messages that are sent by another
device (Peer-to-Peer) on the CANJ1939 network.

Step

Action

1

Create and configure your CANJ1939 network in the Describe window of
TwidoSuite.
See and .

Add the desired Receive object(s) to the element (see Creating or Deleting
CANJ1939 Transmit/Receive Objects, page 335). This will be received by the
Twido Extreme if it is sent by this element.

Open the Program — Configure — Configure the Hardware window
(Module Configuration pane, select CANJ1939 tab) window to display the
message objects that you have configured in the previous step

See Viewing CANJ1939 Transmit/Receive objects, page 343.

Messages Sent by Other Devices

Only messages sent by the Twido Extreme can be created in TwidoSuite. Messages
sent by other CANJ1939 elements (devices) cannot be configured in TwidoSuite.
These must be created in the device firmware.

349

35011386 05/2009



Installing and Configuring the CANJ1939 Fieldbus

CANJ1939 Configuration in Expert Mode

Overview

CANJ1939 configuration involves adding appropriate transmit or receive objects on
elements in the network. See Creating or Deleting CANJ1939 Transmit/Receive
Objects, page 335. This can also be done in expert mode (by selecting the Expert
Mode check box in the Configuration dialog box). This section explains the use of
this mode.

Selecting Expert Mode

PGNs and SPNs

SPN Request

In the TwidoSuite Describe Window, double-click the network, element or port that
you wish to configure to open the Configuration dialog box. Select the Expert Mode
check box.

Result: The Add/Delete an Object buttons are now called Add/Delete an SPN. The
corresponding PGNs/SPNs are revealed. All objects that are added are displayed
with their PGNs and SPNs.

CANJ1939 Message objects are grouped into different types (or Parameter
Groups). Each message object, therefore, is associated with a hexadecimal
Parameter Group Number (PGN) and also has its own individual hexadecimal
identity number known as a Suspect Parameter Number (SPN). Thus a message
object is often referred to by its SPN and several SPNs are related to the same PGN.
For further information see CANJ19139 Parameter Group Number and Suspect
Parameter Number, page 322

A particular use of the Expert Mode is to request specific information from a
CANJ1939 element on the network. This is done by adding a particular Transmit
SPN to the CANJ1939 element and by assigning this SPN value to the %IWC in
the ladder/list program. See Request a PGN Output, page 356 for an example.

35011386 05/2009

350



Installing and Configuring the CANJ1939 Fieldbus

CAN J1939 User Objects

The I/O objects are:

o %IWCO.i.j, %QWCO.i.] (word format - there are no /O bits)

o %IWCDO.i.j, %QWCDO.i.j (double word format)

o %IWCFO.i.j, %QWCO.i.j (floating point format)

where

e iisthe SPN index (# in the Describe Configuration dialog
box)
i=0,.., 31

e jis the channel number (the position (in bytes) of the SPN)

j=0,...7 (for word); j = 0,...,6 (otherwise)

The double word and floating point format 1/0Os ( %IWCD, %QWCD and %IWCF,
%QWCF) have the same structure as the double word and floating point internal
memory objects (%MD and %MF). For more information see CANJ1939
Input/Output Objects, page 352.

351

35011386 05/2009



Installing and Configuring the CANJ1939 Fieldbus

CANJ1939 Input/Output Objects

Introduction
This section describes the addressing of CANJ1939 inputs and outputs.

The syntax implemented for CANJ1939 objects is explained in the following
illustration.

lllustration
Reminder of the addressing principles:

% WG, QWG, IWCD, 0 : i : j
|Symbo| ‘QWCD, IWCF, QWGF | 0 indicates ‘ ‘ PGNindex‘ Channel
Type of object CANJ1939 # number
number)
Specific Values
The table below gives specific values to CANJ1939 objects:
Part Values Comment
IWC - Image of the physical PGN input.
QwcC - Image of the physical PGN output.
IWCD - Same usage as IWC, but in double-word
format.
QWCD - Same usage as QWC, but in double-word
format.
IWCF - Same usage as IWC, but in floating point
format.
QWCF - Same usage as QWC, but in floating point
format.
0 0 This is always O for CANJ1939 (and
always 1 for CANopen).
Note: If an SPN is smaller than 8 bits, ":Xi" is appended to the address to
provide the starting position of the SPN in the word. This address cannot be
used directly in an SPN Request program. The SPN size, however, can be used
in such a program.

35011386 05/2009 352



Installing and Configuring the CANJ1939 Fieldbus

Example

Part Values Comment
i 0to 31 PGN index (# in the Describe
Configuration dialog box)
i 0to 7 for Channel number (the position (in bytes) of
word the SPN)
Oto6
otherwise

Note: If an SPN is smaller than 8 bits, ":Xi" is appended to the address to
provide the starting position of the SPN in the word. This address cannot be
used directly in an SPN Request program. The SPN size, however, can be used

in such a program.

The table below shows an example of CANJ1939 addressing:

1/0 object

Description

%IWCO0.1.0

PGN 1, sub-index 0 input of the Twido Extreme CANJ1939 bus.

Double Word and Floating Point I/Os

Single, double length and floating point words share the same memory zone. Thus,
the floating point word %IWCFO0.i.1 and the double word %IWCDO.i.1 correspond to
the single length words %IWCO.i.j and %IWCO.i.j+1 (the word %IWCO.i.j containing
the least significant bits and the word %IWCO.i.j+1 the most significant bits of the

word %IWCFO.i.j)

The table below shows the overlap of memory allocation for single and double

floating point words of type %IWC. The same applies for %QWC.

format

Double and Floating Point

Even address

%IWCDO.i.0/%l
WCFO0.i.0

%IWCDO.i.2/%l
WCFO0.i.2

%IWCDO.i.4/%|
WCFO0.i.4

%IWCDO.i.6/%l
WCFO0.i.6

Single word format
Odd address
. %IWCO0.i.0
%IWCDO.i.1/% | %IWCO.i.1
IWCFO.i.1 %IWCO0.i.2
%IWCDO0.i.3/% | %IWC0.i.3
%IWCDO0.i.5/% | %IWCO0.i.5
IWCFO0.i.5 %IWC0.i.6

%IWCO0.i.7

NOTE: There are no special instructions (like CAN_CMD for CANopen) in

CANJ1939.

353

35011386 05/2009




Installing and Configuring the CANJ1939 Fieldbus

CANJ1939 Reserved System Words
System words are reserved to provide status information.

%SW80 contains 16 bits of memory (word format) to provide status information
concerning the CANJ1939 port.

%SW80 is described as follows:

e Bit [0] Init error - Lost address to a contending claim
e Bit [1] Init error - Unable to claim an address

e Bit [2] Passive state on port

e Bit [3] Bus-off state on port

%SW33 to %SW40 provide status information concerning the 32 PGN input/output
objects.

The following table illustrates these I/O system words

%SWx PGN object number Content
%SW33 3-2 1-0 4 bits per PGN :
°%SW34 |7-6 5-4 0 = Normal state

1 = PGN received without error

%SW35 | 11-10 9-8 2 =Forces PGN output to be written

%SW36 15-14 13-12 4 = PGN error (input or output)
%SW37 19-18 17 -16 There are 3 types of PGN error
%SW38 | 23- 22 21-20 e error on PGN reception

e time out on PGN reception
%SW39 27 - 26 25 -24 ® error on PGN transmission

%SW40 31-30 29-28

For example, to force the PGN output to be written for a particular PGN, set bit 2 in
the corresponding %SW.

CANJ1939 Programming

Ladder or List programs are created in a similar way to other Twido applications.
See Ladder Language, page 410 and Instruction List Language, page 434. When
using the data browser in the ladder/list program editor, select the appropriate object
type (%IWCO0, %QWCO, %IWCDO0, %QWCDO0, %IWCF0 and %QWCFO) in the
Address menu. If the Twido Extreme is later replaced by a base that does not
support the CANJ1939 protocol, these entries must be deleted from the program
and they are no longer available in the data browser Address list.

35011386 05/2009 354



Installing and Configuring the CANJ1939 Fieldbus

CANJ19393 Error messages

The following conditions will produce error messages in a program concerning
CANJ1939 I/O objects:

e When entering an object (%IWCO0, %QWCO0, %IWCDO0, %QWCDO0, %IWCFO0 and
%QWCFO0) the SPN number i (0 to 31) or channel number j (0 to 7) is out of
range.

e The PLC chosen in the Describe window does not support the CANJ1939
protocol.

e There is no SPN defined at address i, channel j.

355 35011386 05/2009



Installing and Configuring the CANJ1939 Fieldbus

Request a PGN Output

Introduction

A PGN is sent by a CANJ1939 element anytime its value changes. To force a PGN
output, use any of the following 2 methods:

e SPN labelled RQST is used by the Twido Extreme to request a PGN from a
CANJ1939 element.

e System Word %SW33 is used to force a PGN output.

Process of a PGN Request

The following diagram illustrates a PGN request through an example. In this
example, the Twido Extreme sends a request to the CANJ1939 element for the
Exhaust Temperature Parameter Group. This process is explained in the table that

follows:
9

\

@o
CANJ1939 slement
@1
J19%9 e |
w | O Oy &
CANJ1939 element @

List of objects on transmission

Parameter Group Number (RQST)

List of objects on reception

Engine Exhaust Gas Temperature -
Right Manifold

Note: SPN Engine Exhaust Gas Temperalure - Right Manifoidis a part of the global Exhaust Temperature PGN.

35011386 05/2009 356



Installing and Configuring the CANJ1939 Fieldbus

The table below details the process of a PGN request:

Stage Description
1 Twido Extreme sends a SPN RQST to a CANJ1939 element to request the value
of the PGN Exhaust Temperature
2 The CANJ1939 element sends the value of the PGN requested (Exhaust
Temperature)

Using SPN RQST

To use the SPN RQST method, configure the CANJ1939 Network as detailed below

in the following example:

Step

Action

Window location in TwidoSuite

Create a CANJ1939 network with a CANJ1939 element.
For further details on how to create a CANJ1939 network, see .

Describe

On the CANJ1939 element:

® Add the Parameter Group Number (RQST) transmit SPN. For
further details on how to define appropriate (receive or transmit)
SPN, see Creating or Deleting CANJ1939 Transmit/Receive
Objects, page 335.

® Add the receive SPN that you want to request (for example Engine
Exhaust Gas Temperature - Right Manifold). For further details on
how to define appropriate (receive or transmit) SPN, see Creating
or Deleting CANJ1939 Transmit/Receive Objects, page 335.

Describe

On the CANJ1939 element:

1. Right-click and select configuration.

2. Select the Expert Mode check box.

3. Record the PGN you want to request. (For example, the number of
the Parameter Group Exhaust Temperature is 65031)

Describe

Record the address of the output exchange word (%QWCDO0.y.z)
assigned to the SPN RQST that you have added in the previous step.

Program — Configure —
Configure the hardware —
CANJ1939 tab — Address field

Assign the PGN you want to force to the output exchange word
%QWCDO.y.z recorded.

Example: to make a request on the PG Exhaust Temperature
(PGN=65031(16#FEQ7)), use the list instruction:

$QWCO0.0.0 := 16#FEQ07

Note: You can also adjust %QWCDO0.y.z online using the animation
table.

Program — Program — Edit
Program

Note:

If the parameter requested is not available, the CANJ1939 element send a Non-ACKnowledgement (NACK)

to the Twido Extreme.

357

35011386 05/2009




Installing and Configuring the CANJ1939 Fieldbus

Step Action Window location in TwidoSuite
6 | See the value of the forced parameter in the input exchange word
%IWCDO.y.z. online by:
e using the animation table (see ,
® connecting %IWCDO.y.z on an output.
7 | Calculate the actual value of the forced parameter:
Actual value = Value of %IWCDO0.y.z x resolution + offset
Note: | If the parameter requested is not available, the CANJ1939 element send a Non-ACKnowledgement (NACK)
to the Twido Extreme.

Using System Word %SW33
To use the System Word %SW33 method follow this procedure, which is illustrated

in the application example bellow:

Step | Action Window location in
TwidoSuite
1 | On the CANJ1939 element you want to force a PGN output: Describe
1. Right-click and select configuration.
2. Select the Expert Mode check box.
3. Record the PGN you want to force.
2 | Record the address of the output exchange word (%QWCDO0.y.z) assigned to the | Program — Configure
PGN that you want to force. — Configure the
hardware—CANJ1939
tab — Address field
3 | Set the System Word %SW33 to 2 (see example below). Program—>Program—
Note: You can also adjust %QWCDO0.y.z online using the animation table Edit Program
4 | Assign the PGN you want to force to the output exchange word %QWCDO0.y.z Program— Program—
recorded (see example below). Edit Program
Note: You can also adjust %QWCDO0.y.z online using the animation table
5 | See the value of the requested parameter in the input exchange word %IWCDO.y.z.
by:
® using the animation table (see ),
® connecting %IWCDO0.y.z on an output.
6 | Calculate the actual value of the requested parameter:
Actual value = Value of %IWCDO0.y.z x resolution + offset

35011386 05/2009

358




Installing and Configuring the CANJ1939 Fieldbus

System Word %SW33 Example

This example shows how to force an Exhaust Temperature PG output every second:

Assumptions:

e You want to force the PG Exhaust Temperature (PGN=65031(16#FEQ07))
transmission.

e The output exchange word %QWCDO0.0.0 is assigned to the PGN 65031.

(*to force a rising edge of $MO every second*)

LD $S6

ST $MO

LDR $MO

ST %00.0.0

[ $SW33 := %SW33 OR 2 ] (*On each rising edge of $MO¥*)

(*System Word %SW33 is set to 2%*)

[ $QWCD0.0.0 := 16#FE07 ] (*PG Exhaust Temperature is
assigned¥®)

(*to the output exchange word %QWCD0.0.0*)
The same example is shown below as a Ladder program:

(W o
TOFORCE A RISING EDGE OF %M0 EVERY SECOND

Rung o ‘
%56 “%6MO
- | (
S
Rung o ‘
A ] 9:00.0
Y —

%SN3 1= %3SW33 OR 2
9%SW33 =%SW33 OR 2
[

WCWCD0.0.0 = 16#FE07
GCWCD0.0.0 = 16#FEQ7
[

359

35011386 05/2009



Configuring the TwidoPort
Ethernet Gateway

12

Subject of this Chapter

This chapter provides information on the software configuration of the ConneXium
TwidoPort Ethernet Gateway module.

What's in this Chapter?

This chapter contains the following sections:

Section Topic Page
121 Normal Configuration and Connection of TwidoPort 361
12.2 TwidoPort’s Telnet Configuration 370
12.3 Communication Features 385
35011386 05/2009 360




Configuring the TwidoPort Ethernet Gateway

12.1 Normal Configuration and Connection of

TwidoPort

Subject of this Section

This section provides information on how to perform a normal configuration of the
ConneXium TwidoPort module with the TwidoSuite application program, module

connectivity and BootP configuration information, as well.

What's in this Section?

This section contains the following topics:

Topic Page
Normal Configuration with TwidoSuite 362
BootP Configuration 369

361

35011386 05/2009




Configuring the TwidoPort Ethernet Gateway

Normal Configuration with TwidoSuite

Foreword
Configure TwidoPort with these instructions:
NOTE: Plug 'n play feature

When TwidoPort is configured with TwidoSuite, TwidoPort’s IP configuration is
stored in the Twido controller. Therefore, maintenance personnel can exchange
TwidoPorts without additional configuration.

To use the plug 'n play functionality, use TwidoSuite and upgrade the Twido
firmware to 3.4 or higher.

Installing the 499TWDO01100 TwidoPort Module

To install TwidoPort on a Twido PLC system (DIN-rail or panel mounting) and
connect it to the Twido PLC internal bus, follow these steps:

Step Description Action

1 Installation Preparation | Consult the Twido Programmable Controllers

Hardware Reference Guide (TWD USE 10AE) for

instructions on:

e correct mounting positions for Twido modules,

® adding and removing Twido components from a
DIN rail,

e direct mounting on a panel surface,

® minimum clearances for modules in a control

panel.
2 Mounting the Install the module on a DIN rail or panel. For more
499TWDO01100 details, see How to Install the TwidoPort Ethernet
TwidoPort Module Interface Module.

35011386 05/2009 362



Configuring the TwidoPort Ethernet Gateway

Step Description Action
3 Protective Earth (PE) Attach a grounded wire to the M3 screw terminal on
Grounding the bottom of TwidoPort.
4 Serial and Ethernet Connect the modular plug end of the (supplied)

Connections

Top plug:
from Twido (serial)

P
// /)‘\\.\

- %}w

=
lﬂ
T
Bottom plug:

from Ethernet, either a

straight or crossover
cable

TwidoPort-to-Twido cable to TwidoPort's serial port
and connect the other end to the Twido PLC’s
RS485 serial port.

Connect the RJ45 plug from a standard Ethernet
network cable (not supplied) into TwidoPort's
Ethernet port.

363

35011386 05/2009



Configuring the TwidoPort Ethernet Gateway

Declaring the 499TWDO01100 TwidoPort Module

The table below shows the different stages when declaring the 499TWDO01100
TwidoPort module.

Step Action Comment

1 Select Port 1 (or Port 2 if | See .
installed) to configure in
the Describe window.

2 Configure the Feature
dialog box that appears,

TwidoSuite

as explained in the
following steps (see Note Port1:
2)_ Protocol
Type: ‘ Modbus ﬂ
Address 1 ﬂ
Cancel I QK I
3 Select Modbus in the

Protocol Type box.

4 Select Describe step from | See .
the TwidoSuite interface.

5 Display the product See .

catalog and selectand add | At this stage, you may continue adding any other optional module supported
a 499TWDO01100 module | by your Twido controller.

to the system description. | Note: Only one 499TWDO01100 TwidoPort module is allowed.

Note 1 Any RS485 Modbus port on Twido can be used.

Note 2 You can choose any available Modbus address for Port 1 of the Twido controller. Whatever the address
you choose for Port 1, you must set the Punit/Address (see page 367)to 1 in the Connexions
Management tab of TwidoSuite.

Note 3 The 499TWDO01100 TwidoPort module must also be configured (see Configuring the 499TWDO01100
TwidoPort Module, page 364) and when Setting Up Ethernet Connection in TwidoSuite (see page 367)
the Punit/Address value must be changed from the default value "Direct" to the address of the Modbus
Port (for example, 1 or whatever address you previously used for the controller).

Configuring the 499TWD01100 TwidoPort Module

NOTE: The Ethernet parameters of TwidoPort can be configured when the
TwidoSuite application program is in offline mode only.

35011386 05/2009 364



Configuring the TwidoPort Ethernet Gateway

To configure TwidoPort’s Ethernet parameters, follow this procedure:

Step Action Comment

Foreword | To find out more about IP parameters (IP address, subnet mask and gateway address), please refer to
and .

1 Select the 499TWD01100 TwidoPort Result: The Ethernet Configuration dialog box appears,
module to configure TwidoPort’s IP as shown in the example below.
parameters, see . -

Result: The TwidoPort Configuration Sy
window appears on screen, as shown in Ethernet networks
the foIIowing sub-section. ID address configuration
IP Address . . .
Subnet nask - - -
Gateway Address . . .
Cancel I | QK |

2 Enter TwidoPort’s static IP Address in Note: For good device communication, the IP addresses of
dotted decimal notation. the PC running the TwidoSuite application and TwidoPort
(See notes 1 and 2.) must share the same network ID.

3 Enter the valid Subnetwork mask Note: For good device communication, the subnet mask
assigned to TwidoPort by your network configured on the PC running the TwidoSuite application
administrator. Please note that you cannot | and TwidoPort’s subnet mask must match.
leave this field blank; you must enter a As default, the TwidoSuite application automatically
value. computes and displays a default subnet mask based on
(See notes 1 and 3.) the class IP that you have provided in the IP Address field

above. Default subnet mask values, according to the
category of the TwidoPort’s network IP address, follow this
rule:

Class A network -> Default subnet mask: 255.0.0.0

Class B network -> Default subnet mask: 255.255.0.0
Class C network -> Default subnet mask: 255.255.255.0

Note 1 Consult with your network or system administrator to obtain valid IP parameters for your network.

Note 2 To allow good communication over the network, each connected device must have a unique IP address.
When connected to the network, TwidoPort runs a check for duplicate IP address. If a duplicate IP
address is located over the network, the STATUS LED will emit 4 flashes periodically. You must then
enter a new duplicate-free IP address in this field.

Note 3 Unless TwidoPort has special need for subnetting, use the default subnet mask.

Note 4 If there is no gateway device on your network, simply enter TwidoPort's IP address in the Gateway
Address field.

365

35011386 05/2009




Configuring the TwidoPort Ethernet Gateway

Step Action Comment

4 Enter the IP address of the Gateway. On the LAN, the gateway must be on the same segment as
(See notes 1 and 4.) TwidoPort. This information typically is provided to you by

your network administrator. Please note that no default
value is provided by the application, and that you must
enter a valid gateway address in this field.

5 Validate the configuration and transfer it to
the Twido controller.

6 Power off the Twido controller, then power
on again.

Note 1 Consult with your network or system administrator to obtain valid IP parameters for your network.

Note 2 To allow good communication over the network, each connected device must have a unique IP address.
When connected to the network, TwidoPort runs a check for duplicate IP address. If a duplicate IP
address is located over the network, the STATUS LED will emit 4 flashes periodically. You must then
enter a new duplicate-free IP address in this field.

Note 3 Unless TwidoPort has special need for subnetting, use the default subnet mask.

Note 4 If there is no gateway device on your network, simply enter TwidoPort’s IP address in the Gateway
Address field.

35011386 05/2009

366




Configuring the TwidoPort Ethernet Gateway

Setting Up Ethernet Connection in TwidoSuite

To allow the PC running TwidoSuite and the Twido controller to communicate over
the Ethernet network.

Select @) Preferences
Result:
The following Connections Management dialog box appears:

Preferences Apply ] _Restore ]
Default project directory Directory: ‘C WProgram File\Schneider ElectrichTwidoSuiteMly project J
Default projects © _None

C _Sohneider default

* _Customized ‘C\F‘rogram File\Schneider Elaotric\TwidoSuiteMy project | ﬂ
Default program editor @ Ladder

© List
Autosave project & Yeg every 16 ¥|minutes

 No
Detfault background color S

Clear Dark
Default project image € Default image

@ Personalized image \C\Doouments and Settingsidministrateurivly docurnentsh | J

Default functional levels of applications & 40 uiio

C Thewery highest

& Thewvery lowest

€ Manual Manual

E

Connection management
MName Connection_type IP f Phone Punit £ Address Baud rate  Parity Stop bits Timeout Break timeout
COM1 Serial COM1 Punit 5000 20
COM2 Serial COM1 Punit 5000 20
My connection 1 Setial 18216811 Diract 5000 20
Modem connection  Ethernet pteeettesy 19200 MNone 1 5000 20
Add Modify
Step Action
1 Click the Add button in the Connections Management dialog box.

Result: A new connection line is added. The new line displays suggested
default connection settings. You will need to change these settings.
Note: To set a new value in a field, you have two options:

e Select the desired field, then click the Modify button.

® Double click the desired field.

2 In the Name field, enter a descriptive name for the new connection. A valid
name may contain up to 32 alphnumeric characters.

367 35011386 05/2009



Configuring the TwidoPort Ethernet Gateway

Step

Action

In the Connection Type field, click to unfold the dropdown list that includes:
Serial, Ethernet, and USB (if any).

Select Ethernet as you are setting up a new Ethernet connection between your
PC and an Ethernet-capable Twido controller.

In the IP / Phone field, enter a valid IP address which is the IP information of
the Twido controller you wish to connect to.

IP Address: Enter the static IP address that you have previously specified for
your Twido controller.

The Punit / Address field can be filled in when IP / Phone has been selected.
For an Ethernet connection, the default Punit/Address value is Direct. This
default must be changed to 1 (or to whatever address you have previously
used for the controller).

Note: If you use an address different than 1, connection is not possible
(whatever the address you configured for Port 1 (see page 364) of the Twido
controller).

For a Serial Type connection, default value is Punit. When any of those is
selected, the next three fields (Baudrate, Parity and Stop Bits) are disabled.

If you do not know the controller address, @ allows you to select it later, once
the program has been transferred. (A window pops up before the first
connection to let you choose the controller to which you transfer, with a 1-247
range, and 1 as the default address value.)

Use the default settings in Timeout and Break timeout fields, unless you have
specific timeout needs. (For more details, please refer to .)

Click the OK button to save the new connection settings and close the
Connections management dialog box.

Result: All newly-added connections are appended in the Preferences —
Connections Managementtable andinthe Program — Debug — Connect —
Select a connection table.

35011386 05/2009

368



Configuring the TwidoPort Ethernet Gateway

BootP Configuration

BootP Process

MAC Address

TwidoPort expects a response from the BootP server within two minutes of its BootP
request transmission. If it does not, TwidoPort assumes the default IP configuration
that is constructed from a MAC address of this structure:

[85] 16  MACH MACH|

The MAC Address has the structure:
MAC[0] MAC[1] MAC[2] MAC[3] MAC[4] MAC[5].

For Example, if the MAC address is 0080F4012C71, the default IP address would
be 85.16.44.113.

369

35011386 05/2009



Configuring the TwidoPort Ethernet Gateway

12.2 TwidoPort’s Telnet Configuration

Subiject of this Section

This section describes how to configure the ConneXium TwidoPort module with a
Tenet session.

What's in this Section?
This section contains the following topics:

Topic Page
Introducing Telnet Configuration 371
Telnet Main Menu 372
IP/Ethernet Settings 373
Serial Parameter Configuration 374
Configuring the Gateway 375
Security Configuration 377
Ethernet Statistics 378
Serial Statistics 379
Saving the Configuration 380
Restoring Default Settings 381
Upgrading the TwidoPort Firmware 382
Forgot Your Password and/or IP Configuration? 384

35011386 05/2009 370




Configuring the TwidoPort Ethernet Gateway

Introducing Telnet Configuration

Overview of Telnet Configuration

Configure TwidoPort with a Telnet session (using a VT100-compatible Telnet client)
for those cases in which a specific Twido configuration is not found or in which the
BootP request is not answered after two minutes (resulting in the implementation of
the default IP address).

Preparation to Telnet Configuration

NOTE: TwidoPort’s Telenet requirements

While configuring TwidoPort with Telnet, make sure:

e TwidoPort is supplied with power (from a Twido controller) through its serial
connection.

e Telnet's local echois setto off.

To use Telnet, add TwidoPort's default IP address (or TwidoPort’s configured IP
address) to the PC's routing table using the command:

C:\> route add 85.0.0.0 mask 255.0.0.0 local 1P address of PC

Example:

If the IP address of the PCis 192.168.10.30 and the default IP address (or the
configured IP address) of TwidoPortis 85.16.44.113, the complete command
would be:

C:\> route add 85.0.0.0 mask 255.0.0.0 192.168.10.30

371

35011386 05/2009



Configuring the TwidoPort Ethernet Gateway

Telnet Main Menu

Launching the Telnet Main Menu

When you start a Telnet session (e.g., by typing telnet 85.16.44.113 ata

command prompt or by using Windows™ HyperterminaITM), the Telnet main menu
appears after your press Enter:

Telemecanigque 499 THD A1 188 Configuration and Diagnostics
<c) 2884 Schneider Automation Inc

1> IP/Ethernet Settings
Source: DEFAULI
IP Address: 85.16.44.113
Default Gateway: 85.16.44.113
Hetmask: A.8.0.08
Ethernet Frame Tupe: ETHERMETII

2> Serial Configuration
Baud Rate: 19280
Data Bits: 8
Parity: NONE
Stop Bits:- 1
Protocol: RTU

3> Gateway Configuration
Slave Address Source: UNIT_ID
Gateway Mode: SLAUE
MB Broadcasts: ENABLED
4> Security Configuration
E> Ethernet Statistics
6> Serial Statistics

GCommands: Drefault settings. S>ave. Frirmware Upgrade. @>uit without sawve
Select Command or Parameter{i..6} to change:

35011386 05/2009 372



Configuring the TwidoPort Ethernet Gateway

IP/Ethernet Settings

Configuring the IP/Ethernet Settings
Use the following instructions to change the IP/Ethernet settings:

Step Action Comment
1 Start a Telnet session. Use the instructions above to open the
Telnet main menu (see page 372).
2 Select (type) 1 to change the IP STORED may already be the IP source.
source to STORED and press Enter.
3 Set desired IP parameters manually. | Other parameters include:
(See TwidoPort Ethernet settings ® IP Address
following this table.) ® Default Gateway
® Netmask

® Ethernet Frame Type

4 Select R and press Enter. The Telnet main menu appears. (You
may have to press Enter again to
update the screen.)

IP Source

The select IP Source option dictates the location from which the IP configuration
is obtained:

e STORED—from local flash memory.

o SERVED—from BootP server.

e TWIDO—from the Twido controller.

The default IP address (DEFAULT) is derived from the MAC address. (By definition,
the default is not selectable.)

NOTE: A valid IP configuration in the Twido controller overrides the user selection.

Example of Ethernet Settings
The following figure shows an example of TwidoPort’s Ethernet settings:

Telemecanigque 499 TWD 81 188 Configuration and Diagnost
{e» 2004 Schneider fAutomation Inc

IP/Ethernet Settings

1>IP Source: DEFAULT

2)IP Address: 85.16.44.113
IDefault Gateway: 85.16.44.113
4INetmask: 0.8.8.8

5)Ethernet Frame Type: ETHERNET2

Conmands: RYeturn to Main Menu
Select Command or Parameter{l..N) to change:

373 35011386 05/2009




Configuring the TwidoPort Ethernet Gateway

Serial Parameter Configuration

Foreword

NOTE: Under normal circumstances, it is not necessary to configure TwidoPort’s
serial parameters because the module supports an autobaud algorithm that
eliminates the need for serial configuration.

Configuring the Serial Parameters

To configure TwidoPort’s serial parameters:

Step

Action

Comment

1

Start a Telnet session.

Use the instructions above to open the
Telnet main menu (see page 372).

Select (type) 2 to change the serial
settings.

See the following figure.

Verify or reset the settings.

Other parameters include:
® Baud Rate
® Data Bits
® Parity

® Stop Bits
® Protocol

Select R and press Enter.

The Telnet main menu appears. (You
may have to press Enter again to
update the screen.)

Example of Serial Settings

The following figure shows an example of TwidoPort’s serial settings:

Telenecanique 499 TUD &l 183 Configuration and Diagnostics

tc) 2084 Schoedder Autonation [ne

Serial Configueation

1) Baud Rate: 19208
1) Data Bits:
1) Parity: NOWE
4) Srop Bits:

Protocol: RIU

— o

Comnands: Metuen to Main Menu
Gelect Conmand or Pavareteril. M) to change:

35011386 05/2009

374



Configuring the TwidoPort Ethernet Gateway

Configuring the Gateway

Foreword

NOTE: Usually, it is not necessary to configure TwidoPort’'s gateway parameters.

Configuring the Gateway Parameters

To configure the TwidoPort’s gateway:

Step Action Comment
1 Start a Telnet session. Use the instructions above to open the Telnet
main menu (see page 372).
2 Select (type) 3 to change See the following figure.
the gateway parameters.
3 The following gateway parameters are available:
(1) Slave Address Source | FIXED If the slave address source is
FIXED, set the address to the
value of the Twido controller’s
Modbus address. Valid
addresses are in the 1 to 247
range.
UNIT_ID The unit ID of the Modbus/TCP
frame will be used.
(2) Gateway Mode SLAVE Only option for this version.
(3) MB broadcasts DISABLED No broadcast messages are sent
on TwidoPort’s serial port.
ENABLED Broadcast messages are sent
from the Twido controller’s serial
port. (See note below.)
4 Select R and press Enter. | The Telnet main menu appears. (You may have
to press Enter again to update the screen.)
Note Twido does not support any broadcast Modbus messages.

375

35011386 05/2009



Configuring the TwidoPort Ethernet Gateway

Example of Gateway Settings
The following figure shows an example of TwidoPort’'s gateway settings:

Telemecanique 499 TWD B1 18A Configuration and Diagnostics
(c» 2884 Schneider Automation Inc

Gateway Configuration
1> Slave Address Source: UNIT_ID
2> Slave Address: 20
3> Gateway Mode: SLAUE
4> MB Broadcasts:® ENABLED

Commands: RYeturn to Main Menu
Belect Command or Parameter(l..4) to change: _

35011386 05/2009 376



Configuring the TwidoPort Ethernet Gateway

Security Configuration

Configuring the Security Settings

Use the following instructions to change the default password:

Step Action Comment

1 Start a Telnet session. Use the instructions above to open the
Telnet main menu (see page 372).

2 Select (type) 4 and press Enter. The Security Configuration Screen
appears.

Select C and press Enter.

4 Enter the old password. Authorized users will know the old
password (default is USERUSER).

5 Enter a new password. Retype the new password. (See note
below.)

6 Enter the new password again. See the note below for acceptable
passwords.

7 Select R and press Enter. The Telnet main menu appears. (You
may have to press Enter again to
update the screen.)

Note Password details:

® minimum length: 4 characters
® maximum length: 10 characters

e allowed characters: 0 to 9, a to z, A to Z (no spaces)

377

35011386 05/2009




Configuring the TwidoPort Ethernet Gateway

Ethernet Statistics

Viewing Ethernet Statistics
To view TwidoPort’s Ethernet statistics:

Step Action Comment
1 Start a Telnet session. Use the instructions above to open the
Telnet main menu (see page 372).
2 Select (type) 5 to display the See the figure that follows this table.
Ethernet Module Statistics
screen.
Press Enter to refresh the screen.
Press C to clear statistics and press All counters are reset to 0.
Enter.
5 Select R and press Enter. The Telnet main menu appears. (You
may have to press Enter again to
update the screen.)

The Ethernet Module Statistics Screen
TwidoPort’'s Ethernet Module Statistics screen:

Telenecanique 499 TUD &1 100 Conf iguration and Disgnastics

(c) 2084 Schneider Autonation Inc
ETHERWET WODULE STATISTICS

Status: G183

Systen Log Enteys Mo

1P fddresst 192,168.1.140
Nac Addvess: B:B0:f4:nderil

Teangnit Speed: 1BEBASE-T Subnet Mask: 250.255.6.8
Full/Malf Duplexs Half Duplex Gateway fddress: 19046811

Transnit Statistics

Tranenite: £3
Teangnit Retvies:
Lost Caroige:
Late Collision: §
T Bubfer Buvors: B
S1L0 UndexfLow: 8

Receive Statisties  Functioning Eevors

Rocedves: 532 Micted Fackere: 8
Feaning Ervors: 8 Collision Ereers: B
Coepd Low Bovorss 8 Transndt Tineouts: @

(RG Eevors: 0 Menary Ervors: §

R Buffer Brvors: @ et IntenFice Restarts:

Braadcast Packets Reeedued: 37 Hulticast Packets Recedved: 7

Cormands: [Enter] to Refresh, ()lear Statistics, Retuen to Hein Henu

35011386 05/2009

378



Configuring the TwidoPort Ethernet Gateway

Serial Statistics

Viewing Serial Statistics

To view TwidoPort’s serial statistics:

Step

Action

Comment

1

Start a Telnet session.

Use the instructions above to open the
Telnet main menu (see page 372).

Select (type) 6 to display the Serial
Statistics screen and press
Enter.

See the figure that follows this table.
The serial statistics are updated.

Press C to clear statistics and press
Enter.

All counters are reset to 0.

Select R and press Enter.

The Telnet main menu appears. (You
may have to press Enter again to
update the screen.)

The Serial Statistics Screen

TwidoPort’'s Serial Statistics screen:

Telemecanigue 499 THD Bi 168 Configuration and Diagnostics
€c) 2004 Echneider Automation Inc

SERIAL STATISTICS

Serial Bus Statistics

Bus Message Count: 3284
Bus Comn. Error Count: @

Modbus Slave Statistics

Slave Message Count: 4142
£lave Exception Error Count: 3187
£lave Ho Response Count: @

Commands :

[Enter] to Refresh., C)lear Btatistics. R)eturn to Main Menu

379

35011386 05/2009



Configuring the TwidoPort Ethernet Gateway

Saving the Configuration

Saving the Configuration
To save the changes to the configuration, type the configuration password:

Step Action Comment

1 Start a Telnet session. Use the instructions above to open the
Telnet main menu (see page 372).

Select S and press Enter.

Enter the configuration password. The default password is USERUSER).
(See note below.)

Note For more details on how to set a personalized security password, please refer
to Security Configuration, page 377.

The Save Configuration Confirmation Screen
TwidoPort's Ssave Configuration confirmation screen:

Telemecanigue 499 TWD @1 18A Configuration and Diagnostics
<c2 2084 Schneider Automation Inc
SAVE CONFIGURATION

Conf iguration successfully stored to Twido.
Reboot your module fFor the new Configuwation to be in effect.

Rebooting in 5 Seconds. Youw will lose your telnet connection.

Connection to host lost.

35011386 05/2009 380



Configuring the TwidoPort Ethernet Gateway

Restoring Default Settings

Restoring Default Settings

To restore TwidoPort’s default settings:

Step

Action

Comment

1

Start a Telnet session.

Use the instructions above to open the
Telnet main menu (see page 372).

Select D to display the Default
Configuration screen.

See the figure that follows this table.

Press Enter.

Press Enter. is required to display
the main menu.

Save the default configuration.

See Saving the Configuration
(see page 380), above.

The Default Configuration Screen
TwidoPort's Default Configuration screen:

Telemecaglgue 499 TUD @1 188 Configuration and Diagnostics

2884 Schneider Automation [nc

DEFAULT CONFIGURATION

IP Address: 192.168.2.1082
Cateway Address: 192.168.2.182
Subnet Mask: 255.255.8.8

Frame Type: Ethernet 11

Serial Mode: 19268-8-N-1

Gateway Mode: Modbus/RTU £lave Attached
Broadcasts Disabled. Slave Address Source=Unit 1D

Conf iguration Password: USERUSER

You must {S)ave the configuration to make it active.

Returning to Mainm Menuw im 2 Seconds, Hit Enter to refresh._

381

35011386 05/2009



Configuring the TwidoPort Ethernet Gateway

Upgrading the TwidoPort Firmware

Foreword
NOTE:

1. Obtain a newer version of the TwidoPort firmware before attempting to upgrade
the firmware with these instructions.

2. Stop the process before upgrading the firmware.

3. Modbus communication will not be available during the firmware upgrade
procedure.

Upgrading the Firmware

To upgrade the current TwidoPort’s firmware with the latest firmware release you
have obtained, follow this procedure:

Step

Action

Comment

1

Start a Telnet session.

Use the instructions above to open the
Telnet main menu (see page 372).

Select (type) F to initiate the firmware
upgrade.

Five seconds after selecting F
(firmware upgrade), TwidoPort resets
and the Telnet connection is lost.

At the command line, type: £tp and
TwidoPort’s IP address.

For example: £ftp 85.16.44.113

Enter: £tptwd

At the login name prompt.

Enter: cd fw

This takes the user to the £w directory.

Enter: put App.out.
(See notes 1and 2.)

A message indicates that the ftp was
successful. (See note 3.)

Note 1

File names are case-sensitive.

Note 2

Make sure App . out is in the current working directory of the ftp client.

Note 3

A message indicates that TwidoPort will automatically reboot 5 seconds after a

successful ftp.

35011386 05/2009

382



Configuring the TwidoPort Ethernet Gateway

Firmware Upgrade In Progress
The following figure shows a typical Firmware Upgrade In-Progress Screen:

Telemecanigque 499 TWD @1 188 Configuration and Diagnostics

FIRMWARE UPGRADE IM-PROGRESS...
Module will reboot in § Seconds.
After Reboot. Connect wvia FIP to download new Firmware.
FIP Insteuctions:
¥ Connect via FIP: ftp 192_168.2_168
22> Change to ~fw divectory: F[tpicd fu
3> Dounload new fu: ftpPput App.out

After the FTP download is complete, the module will reboot automatically

Rehooting now. Goodbhye.

Connection to host lost.

Kernel Mode

In the absence of valid firmware, TwidoPort goes into Kernel mode. If you attempt
to use Telnet to connect to TwidoPort while it is in this mode, you will see:

Telemecanique 499 TUD 81 188
Kernel Version 98.82d

Dounload valid Exec,App.out, to leave kernel mode.

To exit type 'quit’ 'QUIT’ or control D

383 35011386 05/2009



Configuring the TwidoPort Ethernet Gateway

Forgot Your Password and/or IP Configuration?

Connecting in Backup Mode

Use these instructions to connect to TwidoPort in backup mode.

Step

Action

Comment

1

Connect pin 3 to pin 6 (ground) of the
serial connector.

Use the Schneider 170 XTS 04 100
RJ45 T-connector. (See the following
illustration.)

Connect via ftp to TwidoPort. (See
note.)

TwidoPort uses the following default IP
configuration:

® |P address: 192.168.2.102

e Subnet mask: 255.255.0.0

® Gateway address: 192.168.2.102
® Frame type: Ethernet Il

Get file fw/Conf.dat.

Open the Conf.dat file in a text editor.

Obtain the IP configuration and
password from the Conf.dat file.

Note

No password is required.

FTP Connection

The following illustration shows how to connect to TwidoPort via ftp in backup mode:

E

4627 WD0 1100

} greenfwhite
green

[ seract
B
Bk

[0 oo

[l enact

ConneXium

35011386 05/2009

384




Configuring the TwidoPort Ethernet Gateway

12.3 Communication Features

Subject of this Section

This section describes the communications features supported by the ConneXium
TwidoPort Ethernet gateway.

What's in this Section?
This section contains the following topics:

Topic Page
Ethernet Features 386
Modbus/TCP Communications Protocol 387
Locally Supported Modbus Function Codes 388

385 35011386 05/2009



Configuring the TwidoPort Ethernet Gateway

Ethernet Features

Introduction

Ethernet Features

The ConneXium TwidoPort adds Ethernet connectivity to the Schneider Electric
Twido product line. It is the gateway between a single Twido Modbus/RTU (RS485)
device and the physical layer of Modbus/TCP networks in slave mode. TwidoPort
does not require a separate power supply because it gets power from the Twido
controller through its serial port. This gateway module supports slave mode only.

TwidoPort supports the following Ethernet features:

e Auto-negotiation
TwidoPort supports 10/100TX auto-negotiation. It communicates only in half-
duplex mode.

e Auto-MDI/MDI-X
TwidoPort supports auto-switching of transmit and receive wire pairs to establish
communications with the end device (auto-MDI/MDI-X). TwidoPort, therefore,
transparently interconnects infrastructure or end devices with either straight-
through or crossover cables.

35011386 05/2009

386



Configuring the TwidoPort Ethernet Gateway

Modbus/TCP Communications Protocol

About Modbus

The Modbus protocol is a master/slave protocol that allows one master to request
responses from slaves or to take action based on their requests. The master can
address individual slaves or can initiate a broadcast message to all slaves. Slaves
return a message (response) to queries that are addressed to them individually.
Responses are not returned to broadcast queries from the master.

About Modbus/TCP Communications

TwidoPort supports up to 8 simultaneous Modbus/TCP connections. Attempting to
use more than 8 connections results in a degradation of performance because
TwidoPort closes the connection with the longest idle time to accept a new
connection request.

Theory of Operations

Modbus/TCP clients can communicate with Twido through TwidoPort, a bridge
between Twido devices (Modbus/RTU over RS485 serial link) and Modbus/TCP
over Ethernet networks.

NOTE: When implementing TwidoPort on a network, the system design
requirements must account for the inherent limited bandwidth of serial connections.
Expect a peak performance of approximately 40 Modbus transactions per second.
Requesting multiple registers in a single request is more efficient than placing a
separate request for each register.

You cannot initiate read or write requests from the Twido controller through
TwidoPort.

387

35011386 05/2009



Configuring the TwidoPort Ethernet Gateway

Locally Supported Modbus Function Codes

List Function Codes

TwidoPort answers the following locally supported Modbus function codes only

when the unit ID is set to 254. (Locally supported function codes are those answered
directly by TwidoPort and not by the Twido controller.)

Modbus Subfunction OPCODE Description

Function Code | Code

8 0 N/A return query data

8 10 N/A clear counters

8 11 N/A return bus message count

8 12 N/A return bus comm. error count

8 13 N/A return bus exception error count

8 14 N/A return slave message count

8 15 N/A return slave no response count

8 21 3 get Ethernet statistics

8 21 4 clear Ethernet statistics

43 14 N/A read device ID (see note 1.)

Note 1 TwidoPort supports only the basic object IDs of the read device
identification function code with both stream and individual access.

NOTE: See the Modbus specification at www.modbus.org for details on message

formats and access classes.

35011386 05/2009

388



Configuring the TwidoPort Ethernet Gateway

389 35011386 05/2009



Operator Display Operation

13

Subject of this Chapter

This chapter provides details for using the optional Twido Operator Display.

What's in this Chapter?

This chapter contains the following topics:

Topic Page
Operator Display 391
Controller Identification and State Information 394
System Objects and Variables 396
Serial Port Settings 403
Time of Day Clock 404
Real-Time Correction Factor 405

35011386 05/2009 390



Operator Display Operation

Operator Display

Introduction

The Operator Display is a Twido option for displaying and controlling application
data and some controller functions such as operating state and the Real-Time Clock
(RTC). This option is available as a cartridge (TWDXCPODC) for the Compact
controllers or as an expansion module (TWDXCPODM) for the Modular controllers.

The Operator Display has two operating modes:

e Display Mode: only displays data.
e Edit mode: allows you to change data.

NOTE: The operator display is updated at a specific interval of the controller scan
cycle. This can cause confusion in interpreting the display of dedicated outputs for
%PLS or %PWM pulses. At the time these outputs are sampled, their value will
always be zero, and this value will be displayed.

Displays and Functions

The Operator Display provides the following separate displays with the associated
functions you can perform for each display.
e Controller Identification and State Information: Operations Display
Display firmware revision and the controller state. Change the controller state
with the Run, Initial, and Stop commands.
e System Objects and Variables: Data Display
Select application data by the address: %I, %Q, and all other software objects
on the base controller. Monitor and change the value of a selected software data
object.
e Serial Port Settings: Communication Display
Display and modify communication port settings.
e Time of Day Clock: Time/Date Display
Display and configure the current date and time (if the RTC is installed).
e Real Time Correction: RTC Factor
Display and modify the RTC Correction value for the optional RTC.

NOTE:

1. The TWDLCe*40DRF series of compact controllers and the Twido Extreme
TWDLEDCK1 PLC have an integrated RTC.

2. On all other controllers, time of day clock and real-time correction are only
available if the Real-Time Clock (RTC) option cartridge (TWDXCPRTC) is
installed.

391 35011386 05/2009



Operator Display Operation

lllustration
The following illustration shows a view of the Operator Display, which consists of a
display area (here in Normal mode) and four push-button input keys.
Display area
T M 123
v 123 4
MOD/
ESC 4 P i
O
\ J
V
Input keys
Display area

The Operator Display provides an LCD display capable of displaying two lines of
characters:

e The first line of the display has three 13-segment characters and four 7-segment
characters.

e The second line has one 13-segment character, one 3-segment character (for a
plus/minus sign), and five 7-segment characters.

NOTE: If in Normal mode, the first line indicates an object name and the second line
displays its value. If in Data mode, the first line displays %SW68 value and the
second line displays %SW69 value.

35011386 05/2009 392



Operator Display Operation

Input keys

The functions of the four input push-buttons depend on the Operator Display mode.

Key In Display Mode In Edit Mode

ESC Discard changes and return to previous
display.

‘ Go to the next value of an object being
edited.

vance to next display. o to the next object type to edit.

» Ad displ G h bj di

MOD/EN | Go to edit mode. Accept changes and return to previous

TER display.

Selecting and Navigating the Displays

The initial display or screen of the Operator Display shows the controller identifi-

cation and state information. Press the ® push-button to sequence through each
of the displays. The screens for the Time of Day Clock or the Real-Time Correction
Factor are not displayed if the optional RTC cartridge (TWDXCPRTC) is not
detected on the controller.

As a shortcut, press the ESC key to return to the initial display screen. For most
screens, pressing the ESC key will return to the Controller Identification and State
Information screen. Only when editing System Objects and Variables that are not
the initial entry (%I10.0.0), will pressing ESC take you to the first or initial system
object entry.

To modify an object value, instead of pressing the B push-button to go to the first
value digit, press the MOD/ENTER key again.

393

35011386 05/2009



Operator Display Operation

Controller Identification and State Information

Introduction

Example

Controller States

The initial display or screen of the Twido optional Operator Display shows the
Controller Identification and State Information.

The firmware revision is displayed in the upper-right corner of the display area, and
the controller state is displayed in the upper-left corner of the display area, as seen
in the following:

Controller Firmware

state revision

Controller states include any of the following:

NCF: Not Configured

The controller is in the NCF state until an application is loaded. No other state is
allowed until an application program is loaded. You can test the 1/0 by modifying
system bit S8 (see System Bits (%S), page 719).

STP: Stopped

Once an application is present in the controller, the state changes to the STP or
Stopped state. In this state, the application is not running. Inputs are updated and
data values are held at their last value. Outputs are not updated in this state.
INI: Initial

You can choose to change the controller to the INI or initial state only from the
STP state. The application is not running. The controller's inputs are updated and
data values are set to their initial state. No outputs are updated from this state.
RUN: Running

When in the RUN or running state the application is running. The controller's
inputs are updated and data values are set according to the application. This is
the only state where the outputs are updated.

35011386 05/2009

394



Operator Display Operation

e HLT: Halted (User Application Error)
If the controller has entered an ERR or error state, the application is halted. Inputs
are updated and data values are held at their last value. From this state, outputs
are not updated. In this mode, the error code is displayed in the lower-right portion
of the Operator Display as an unsigned decimal value.

o NEX: Not Executable (not executable)
An online modification was made to user logic. Consequences: The application
is no longer executable. It will not go back into this state until all causes for the
Non-Executable state have been resolved.

Displaying and Changing Controller States

Using the Operator Display, you can change to the INI state from the STP state, or
from STP to RUN, or from RUN to STP. Do the following to change the state of the
controller:

Step Action

1 Press the ¥ key until the Operations Display is shown (or press ESC). The current
controller state is displayed in the upper-left corner of the display area.

Press the MOD/ENTER key to enter edit mode.

Press the ‘s key to select a controller state.

4 | Press the MOD/ENTER key to accept the modified value, or press the ESC key to
discard any modifications made while in edit mode.

395 35011386 05/2009



Operator Display Operation

System Objects and Variables

Introduction

The optional Operator Display provides these features for monitoring and adjusting

application data:

e Select application data by address (such as %l or %Q).
e Monitor the value of a selected software object/variable.
e Change the value of the currently displayed data object (including forcing inputs

and outputs).

System Objects and Variables
The following table lists the system objects and variables, in the order accessed, that

can be displayed and modified by the Operator Display.

Object Variable/Attribute Description Access
Input %lx.y.z Value Read/Force
Output %Qx.y.z Value Read/Write/Force
Timer %TMX.V Current Value Read/Write
%TMX.P Preset value Read/Write
%TMX.Q Done Read
Counter %Cx.V Current Value Read/Write
%Cx.P Preset value Read/Write
%Cx.D Done Read
%Cx.E Empty Read
%Cx.F Full Read
Memory Bit YoMx Value Read/Write
Word Memory YMWx Value Read/Write
Constant Word Y%KWx Value Read
System Bit %Sx Value Read/Write
System Word Y%SWx Value Read/Write
Analog Input %IWx.y.z Value Read
Analog output %QWx.y.z Value Read/Write
Fast Counter %FCx.V Current Value Read
%FCx.VD* Current Value Read
%FCx.P Preset value Read/Write
%FCx.PD* Preset value Read/Write
%FCx.D Done Read

35011386 05/2009

396




Operator Display Operation

Object Variable/Attribute Description Access

Very Fast Counter %VFCx.V Current Value Read
%VFCx.VD* Current Value Read
%VFCx.P Preset value Read/Write
%VFCx.PD* Preset value Read/Write
%VFCx.U Count Direction Read
%VFCx.C Catch Value Read
%VFCx.CD* Catch Value Read
%VFCx.S0 Threshold 0 Value Read/Write
%VFCx.S0D* Threshold 0 Value Read/Write
%VFCx.S1 Threshold Value1 Read/Write
%VFCx.S1D* Threshold Value1 Read/Write
%VFCx.F Overflow Read
%VFCx.T Timebase Read/Write
%VFCx.R Reflex Output Enable Read/Write
%VFCx.S Reflex Input Enable Read/Write

Input Network Word %INWx.z Value Read

Output Network Word %QNWHx.z Value Read/Write

Grafcet Yo XX Step Bit Read

Pulse Generator %PLS.N Number of Pulses Read/Write
%PLS.ND* Number of Pulses Read/Write
%PLS.P Preset value Read/Write
%PLS.D Done Read
%PLS.Q Current Output Read

Pulse Width Modulator %PWM.R Ratio Read/Write
%PWM.P Preset value Read/Write

Drum Controller %DRx.S Current Step Number Full Read
%DRx.F Read

Step counter %SCx.n Step Counter bit Read/Write

Register %Rx.| Input Read/Write
%Rx.0 Output Read/Write
%Rx.E Empty Read
%Rx.F Full Read

Shift bit register %SBR.x.yy Register Bit Read/Write

Message %MSGx.D Done Read
%MSGx.E Error Read

AS-Interface slave input %lAxX.y.z Value Read/Force

AS-Interface analog slave | %IWAXx.y.z Value Read

input

AS-Interface slave output | %QAXx.y.z Value Read/Write/Force

397

35011386 05/2009




Operator Display Operation

Object Variable/Attribute Description Access
AS-Interface analog slave | %QWAXx.y.z Value Read/Write
output
CANopen slave PDO input | %IWCx.y.z Single-word value Read
CANopen slave PDO %QWCxX.y.z Single-word value Read/Write
output

Notes:

1. (*) means a 32-bit double word variable. The double word option is available on
all controllers with the exception of the Twido TWDLCeA10DRF controllers.

2. Variables will not be displayed if they are not used in an application since Twido
uses dynamic memory allocation.

3. If the value of %MW is greater than +32767 or less than -32768, the operator
display will continue to blink.

4. If the value of %SW is greater than 65535, the operator display continues to blink,
except for %SWO0 and %SW11. If a value is entered that is more than the limit,
the value will return to the configured value.

5. If a value is entered for %PLS.P that is more than the limit, the value written is the
saturation value.

Displaying and Modifying Objects and Variables

Each type of system object is accessed by starting with the Input Object (%l),
sequencing through to the Message object (%MSG), and finally looping back to the
Input Object (%l).

To display a system object:

Step

Action

1

Press the B key until the Data Display screen is shown.
The Input object ("I") will be displayed in the upper left corner of the display area.
The letter " | " (or the name of the object previously viewed as data) is not blinking.

Press the MOD/ENTER key to enter edit mode.
The Input Object "I" character (or previous object name viewed as data) begins
blinking.

Press the ‘ key to step sequentially through the list of objects.

Press the B key to step sequentially through the field of an object type and press
the ‘ key to increment through the value of that field. You can use the B key
and ‘ key to navigate and modify all fields of the displayed object.

35011386 05/2009

398




Operator Display Operation

Step Action

5 Repeat steps 3 and 4 until editing is complete.

6 Press the MOD/ENTER key to accept the modified values.

Note: The object's name and address have to be validated before accepting any
modifications. That is, they must exist in the configuration of the controller prior to
using the operator display.

Press ESC to discard any changes made in edit mode.

Data Values and Display Formats

In general, the data value for an object or variable is shown as a signed or unsigned
integer in the lower-right of the display area. In addition, all fields suppress leading
zeros for displayed values. The address of each object is displayed on the Operator
Display in one of the following seven formats:

I/O format

AS-Interface slaves I/O format
CANopen slaves I/O format
Function Block Format
Simple Format

Network 1/0 format

Step Counter Format

Shift bit register format

Input/Output Format

The input/output objects (%I, %Q, %IW and %QW) have three-part addresses (e.g.:
%IX.Y.Z) and are displayed as follows:

e Object type and controller address in the upper-left
e Expansion address in the upper-center
e |/O channel in the upper-right

In the case of a simple input (%) and output (%Q), the lower-left portion of the
display will contain a character that is either "U" for unforced or "F" for a forced bit.
The force value is displayed in the lower-right of the screen.

The output object %Q0.3.11 appears in the display area as follows:

399

35011386 05/2009



Operator Display Operation

AS-Interface slaves I/O format

AS-Interface slave I/O objects (%IA, %QA, %IWA and %QWA) have four-part
addresses (e.g.: %lAx.y.z) and are displayed as follows:

The object type in the upper-left

AS-Interface master address on the expansion bus in the upper-left center
Address of the slave on the AS-Interface bus in the upper-right center
Slave I/O channel in the upper-right.

In the case of a simple input (%lA) and output (%QA), the lower-left portion of the
display will contain a character that is either "U" for unforced or "F" for a forced bit.
The force value is displayed in the lower-right of the screen.

The output object %QA1.3A.2 appears in the display area as follows:

QA 1 3A 2

CANopen slaves I/O format

CANopen slave PDO 1/0 objects (%IWC and %QWC) have four-part addresses
(e.g.: %IWCx.y.z) and are displayed as follows:

e The object type in the upper-left

e CANopen master address on the expansion bus in the upper-left center
e Address of the slave on the CANopen bus in the upper-right center

e Slave PDO I/O channel in the upper-right.

e Signed value for the object in the lower portion

In the following example, the PDO output object %QWC1.3.2 contains the signed
value +24680:

QWC 1 3 2
+ 24680

35011386 05/2009 400



Operator Display Operation

Function Block Format

The function blocks (%TM, %C, %FC, %VFC, %PLS, %PWM, %DR, %R, and
%MSGj) have two-part addresses containing an object number and a variable or
attribute name. They are displayed as follows:

e Function block name in the upper-left

e Function block number (or instance) in the upper-right
e The variable or attribute in the lower-left

e Value for the attribute in the lower-right

In the following example, the current value for timer number 123 is set to 1,234.

T M 123
v 1234

Simple Format

A simple format is used for objects %M, %MW, %KW, %MD, %KD, %MF, %KF, %S,
%SW and %X as follows:

e Object number in the upper-right
e Signed value for the objects in the lower portion

In the following example, memory word number 67 contains the value +123.

+ 123

401 35011386 05/2009



Operator Display Operation

Network Input/Output Format

The network input/output objects (%INW and %QNW) appear in the display area as
follows:

Object type in the upper-left

Controller address in the upper-center

Object number in the upper-right

Signed value for the object in the lower portion

In the following example, the first input network word of the remote controller
configured at remote address #2 is set to a value -4.

I N W 2 0

Step Counter Format

The step counter (%SC) format displays the object number and the step counter bit
as follows:

e Object name and number in the upper-left
e Step counter bit in the upper right
e The value of the step counter bit in the lower portion of the display

In the following example, bit number 129 of step counter number 3 is set to 1.

8 C 3 129

Shift Bit Register Format
The shift bit register (%SBR) appears in the display area as follows:

e Object name and number in the upper-left
e Register bit number in the upper-right
e Register bit value in the lower-right

The following example shows the display of shift bit register number 4.

S B R 4 9

35011386 05/2009 402



Operator Display Operation

Serial Port Settings

Introduction

The operator display allows you to display the protocol settings and change the
addresses of all serial ports configured using TwidoSuite. The maximum number of
serial ports is two. In the example below, the first port is configured as Modbus
protocol with an address 123. The second serial port is configured as a remote link
with an address of 4.

Displaying and Modifying Serial Port Settings

Twido controllers can support up to two serial ports. To display the serial port
settings using the operator display:

Step

Action

1

Press the B key until the Communication Display is shown. The single letter of
the protocol setting of the first serial port ("M", "R", or "A") will be displayed in the
upper left corner of the operator display.

Press the MOD/ENTER key to enter the edit mode.

Press the B key until you are in the field that you wish to modify.

Press the 4 key to increment the value of that field.

Continue steps 3 and 4 until the address settings are complete.

Ol | WD

Press the MOD/ENTER key to accept the modified values or ESC to discard any
modifications made while in edit mode.

Note: The address is part of the configuration data on the Controller. Changing its value
using the operator display means that you can no longer connect using TwidoSuite as equal.
TwidoSuite will require that you do a download to become equal again.

403

35011386 05/2009




Operator Display Operation

Time of Day Clock

Introduction

You can modify the date and time using the operator display if the RTC option
cartridge (TWDXCPRTC) is installed on your Twido controller. The Month is
displayed in the upper-left side of the HMI Display. Until a valid time has been
entered, the month field will contain the value "RTC". The day of the month is
displayed in the upper-right corner of the display. The time of day is in military
format. The hours and minutes are shown in the lower-right corner of the display and
are separated by the letter "h". The example below shows that the RTC is set to
March 28, at 2:22 PM.

M A R 28
14h 2 2

NOTE:

1. The TWDLCA*40DRF series of compact controllers and the Twido Extreme
TWDLEDCK1 PLC have an integrated RTC.

2. On all other controllers, time of day clock and real-time correction are only
available if the Real-Time Clock (RTC) option cartridge (TWDXCPRTC) is
installed.

Displaying and Modifying Time of Day Clock
To display and modify the Time of Day Clock:

Step | Action

1| Press the B key until the Time/Date Display is shown. The month value ("JAN",

"FEB") will be displayed in the upper-left corner of the display area. The value "RTC"
will be displayed in the upper-left corner if no month has been initialized.

Press the MOD/ENTER key to enter the edit mode.

Press the B key until you are in the field that you wish to modify.

A WD

Press the ‘ key increment the value of that field.

5 | Continue steps 3 and 4 until the Time of Day value is complete.

6 | Press the MOD/ENTER key to accept the modified values or ESC to discard any
modifications made while in edit mode.

35011386 05/2009 404



Operator Display Operation

Real-Time Correction Factor

Introduction

Each Real-Time Clock (RTC) has a RTC Correction Factor value that is used to
correct for inaccuracies in the RTC module.

You can display and modify the Real-Time Correction Factor:

e using the operator display,

e by selecting Program — Debug — Check PLC — Configure Real Time Clock
from the task tool panel if you are connected,

e using system bits and system words, see System Bits and System Words,
page 718.

Real-Time Correction Factor for Compact and Modular bases

For compact and modular bases, the Real-Time Correction Factor is an unsigned 3-
digit integer (from 0 to 127) displayed in the lower-right corner of the display.

The example below shows a correction factor of 127.

R TC Corr
127

Displaying and Modifying RTC Correction
To display and modify the Real-Time Correction Factor:

Step Action

1 Press the B key until the RTC Factor Display is shown. "RTC Corr" will be
displayed in the upper line of the operator display.

Press the MOD/ENTER key to enter edit mode.

Press the B key until you are in the field that you wish to modify.

Press the ## key to increment the value of that field.

Continue Steps 3 and 4 until the RTC correction value is complete.

ol | WO|DN

Press the MOD/ENTER key to accept the modified values or ESC to discard any
modifications made while in edit mode.

405 35011386 05/2009



Operator Display Operation

Real-Time Correction Factor for Twido Extreme Bases

For Twido Extreme TWDLEDCK1 bases, the Real-Time Correction Factor needs to
be calculated as follows:

Step Action

1 Set the Real-Time Clock Value.

2 After a few weeks, determine the deviation of the Real-Time Clock on your PLC.
3 Calculate the factor necessary for a Real-Time Correction on a weekly basis.

4 Set the Real-Time Correction Factor with this value.

Result: the Real-Time Correction Factor will be added to (or subtracted from)
the Real-Time Clock value of your PLC every week.

The Real-Time Correction Factor for Twido Extreme is a 6 bit value:

Bits Description Possible values
0
1
> . .
. 'Sl'gfoc:;rsrectlon factor in 010 63
4
5
6 Sign of the correction factor | O: subtraction
1: addition

35011386 05/2009 406




Operator Display Operation

407 35011386 05/2009



Description of Twido Languages

Subject of this Part

This part provides instructions for using the Ladder, List, and Grafcet programming
languages to create control programs for Twido programmable controllers.

What's in this Part?

This part contains the following chapters:

Chapter Chapter Name Page
14 Ladder Language 410
15 Instruction List Language 434
16 Grafcet 446

35011386 05/2009

408




Twido Languages

409 35011386 05/2009



Ladder Language

14

Subject of this Chapter
This chapter describes programming using Ladder Language.

What's in this Chapter?
This chapter contains the following topics:

Topic Page
Introduction to Ladder Diagrams 411
Programming Principles for Ladder Diagrams 413
Ladder Diagram Blocks 415
Ladder Language Graphic Elements 418
Special Ladder Instructions OPEN and SHORT 421
Programming Advice 423
Ladder/List Reversibility 428
Guidelines for Ladder/List Reversibility 430
Program Documentation 432

35011386 05/2009 410



Ladder Language

Introduction to Ladder Diagrams

Introduction

Ladder diagrams are similar to relay logic diagrams that represent relay control
circuits. The main differences between the two are the following features of Ladder
programming that are not found in relay logic diagrams:

e Allinputs are represented by contact symbols ().
e All outputs are represented by coil symbols ().
o Numerical operations are included in the graphical Ladder instruction set.

Ladder Equivalents to Relay Circuits

Ladder Rungs

The following illustration shows a simplified wiring diagram of a relay logic circuit and
the equivalent Ladder diagram.

LSl PR1 CR1 M1
LS PB1 CR1 M1 %610.0 %I0.2 %I04 %Q0.4
| \ | | | ] e
A T |
e L Ls2  SSl
LS2 SS1 %I0.1 %0107
| | [ |
A - [ [
O
Relay logic circuit Ladder diagram

Notice that in the above illustration, all inputs associated with a switching device in
the relay logic diagram are shown as contacts in the Ladder diagram. The M1 output
coil in the relay logic diagram is represented with an output coil symbol in the Ladder
diagram. The address numbers appearing above each contact/coil symbol in the
Ladder diagram are references to the locations of the external input/output
connections to the controller.

A program written in Ladder language is composed of rungs which are sets of
graphical instructions drawn between two vertical potential bars. The rungs are
executed sequentially by the controller.

The set of graphical instructions represent the following functions:

e Inputs/outputs of the controller (push buttons, sensors, relays, pilot lights, etc.)
e Functions of the controller (timers, counters, etc.)

411

35011386 05/2009



Ladder Language

e Math and logic operations (addition, division, AND, XOR, etc.)

e Comparison operators and other numerical operations (A<B, A=B, shift, rotate,
etc.)

e Internal variables in the controller (bits, words, etc.)

These graphical instructions are arranged with vertical and horizontal connections
leading eventually to one or several outputs and/or actions. A rung cannot support
more than one group of linked instructions.

Example of Ladder Rungs
The following diagram is an example of a Ladder program composed of two rungs.

%10.1 YoM42
Example Rung 1 4{ | ( }_

%I0.3

H

%M42 %Q1.2
Example Rung 2 —H ( }—
L'%MW22:=%MW15+%KW1

35011386 05/2009 412



Ladder Language

Programming Principles for Ladder Diagrams

Programming Grid

Columns

3 4 5 6

Each Ladder rung consists of a grid of seven rows by eleven columns that are
organized into two zones as shown in the following illustration.

11

Rows

Grid

A/ Gells \‘

Potential
Bars

Test Zone

”

Action Zone |
«——»

413

35011386 05/2009



Ladder Language

Grid Zones

The Ladder diagram programming grid is divided into two zones:

e Test Zone
Contains the conditions that are tested in order to perform actions. Consists of
columns 1 - 10, and contains contacts, function blocks, and comparison blocks.
e Action Zone
Contains the output or operation that will be performed according to the results of
the tests of the conditions in the Test Zone. Consists of columns 8 - 11, and
contains coils and operation blocks.

Entering Instructions in the Grid

A Ladder rung provides a seven by eleven programming grid that starts in the first
cell in the upper left-hand corner of the grid. Programming consists of entering
instructions into the cells of the grid. Test instructions, comparisons, and functions
are entered in cells in the test zone and are left-justified. The test logic provides
continuity to the action zone where coils, numerical operations, and program flow
control instructions are entered and are right-justified.

The rung is solved or executed (tests made and outputs assigned) within the grid
from top to bottom and from left to right.

Sections/Subroutines

Rung Headers

Each section/subroutine consists of:

e A section header with with section number (automatically assigned by the
program), section/subroutine label, a user-defined section/subroutine title and
four lines of user comments. See .

e A sequence of rungs below the section/subroutine header.

In addition to the rung, a rung header appears directly above the rung. Use the rung
header to document the logical purpose of the rung. The rung header can contain
the following information:

Rung number
Labels (%Li)
Rung title

Rung comments

For more details about using the rung header to document your programs, see
Program Documentation, page 432.

35011386 05/2009

414



Ladder Language

Ladder Diagram Blocks

Introduction

Ladder diagrams consist of blocks representing program flow and functions such as
the following:

Contacts

Coils

Program flow instructions
Function blocks
Comparison blocks
Operation blocks

Contacts, Coils, and Program Flow

Contacts, coils, and program flow (jump and call) instructions occupy a single cell of
the ladder programming grid. Function blocks, comparison blocks, and operation
blocks occupy multiple cells.

The following are examples of a contact and a coil.

@ LD contact - coil
Rung 1
g CONTACT COoIL

TR0 4 SO0 4
|
I 8

Function Blocks

Function blocks are placed in the test zone of the programming grid. The block must
appear in the first row; no ladder instructions or lines of continuity may appear above
or below the function block. Ladder test instructions lead to the function block’s input
side, and test instructions and/or action instructions lead from the block’s output
side.

415 35011386 05/2009



Ladder Language

Function blocks are vertically oriented and occupy two columns by four rows of the
programming grid.

The following is an example of a counter function block.

e

Rung 1

RESET COUNTERD SOWNGT_O
VERFLOW
%I0.0 %0 %000
—{ P }7 R E ( [R—-
AN 7 PSET_OUT
SET _OouT_
OO REAGHED
%I0 1 SN Q0.1
—{ P }— s D { [
UPCOUNT
%I0.2
—{ P }— cu Fi—
DOWNCOUNT

%03

—{P}iw

Comparison Blocks

Comparison blocks are placed in the test zone of the programming grid. The block
may appear in any row or column in the test zone as long as the entire length of the
instruction resides in the test zone.

Comparison blocks are horizontally oriented and occupy two columns by one row of
the programming grid.

See the following example of a comparison block.

v e
Rung 1
g P WW0=%SWWS0 OUTPUTSS

%I04 %630.5
r
S

To edit the comparison block, click on the field just above the comparison box and
type in your expression. Both symbols and addresses may be used as operands
here. The comment field however is disabled.

35011386 05/2009

416



Ladder Language

Operation blocks

Operation blocks are placed in the action zone of the programming grid. The block
may appear in any row in the action zone. The instruction is right-justified; it appears
on the right and ends in the last column.

Operation blocks are horizontally oriented and occupy four columns by one row of
the programming grid.

The following is an example of an operation block.

(2) b

RuNg 1 ‘

SEMIAA 20 = SQRT (%MW 5)
SHORT

To edit the operation block, click on the field just above the operation box and type
in your expression. Both symbols and addresses may be used as operands here.
The comment field (top box), however, is disabled.

If symbols have been previously defined, the expression will be displayed with both
addresses (lower box) and symbols (upper box) as shown in the following example
of an operation block. Here, the address %MW2 has been previously defined with
the symbol OPERATE_SWITCH.

S e

RuNg 1 ‘

OPERATE_SWITCH = %MW3

SEMWE = TMWS
SHORT ‘

417

35011386 05/2009



Ladder Language

Ladder Language Graphic Elements

Introduction

Instructions in Ladder diagrams consist of graphic elements.

Contacts

The contacts graphic elements are programmed in the test zone and take up one
cell (one row high by one column wide).

a falling edge

Name Graphic Instruction | Function

element
Normally open LD Passing contact when the
contact controlling bit object is at state 1.
Normally closed LDN Passing contact when the
contact 4{/ ‘* controlling bit object is at state 0.
Contact for detecting LDR Rising edge: detecting the change
a rising edge 4{’3‘* from 0 to 1 of the controlling bit

object.

Contact for detecting LDF Falling edge: detecting the change

from 1 to O of the controlling bit
object.

Link Elements

The graphic link elements are used to insert/delete ladder loops:.

Name

Graphic
element

Function

Insert a link

|

Insert an empty ladder loop

Delete a link

x

Note:

Delete an empty ladder loop

1. If the ladder loop contains any elements, you
must first delete all ladder elements before you
can delete the ladder loop,

2. The keyboard shortcut used to remove an
element is DELETE.

35011386 05/2009

418




Ladder Language

Coils

The coil graphic elements are programmed in the action zone and take up one cell
(one row high and one column wide).

Name Graphic Instruction | Function
element
Direct coil ST The associated bit object takes the
— - value of the test zone result.

Inverse coil A STN The associated bit object takes the
negated value of the test zone result.

Set coil (S S The associated bit object is set to 1
when the result of the test zone is 1.

Reset coil R The associated bit object is set to 0

—R- when the result of the test zone is 1.
Jump or Subroutine JMP Connect to a labeled instruction,
call ->>%Ll SR upstream or downstream.
->>%SRi
Transition condition Grafcet language. Used when the
coil programming of the transition
—#- conditions associated with the

transitions causes a changeover to the
next step.

Return from a RET Placed at the end of subroutines to

subroutine <RET> return to the main program.

Stop program END Defines the end of the program.

<END>

419 35011386 05/2009



Ladder Language

Function blocks

The graphic elements of function blocks are programmed in the test zone and
require four rows by two columns of cells (except for very fast counters which require
five rows by two columns).

Name

Graphic
element

Function

Timers, counters,
registers, and so on.

L

Each of the function blocks uses inputs and outputs
that enable links to the other graphic elements..
Note: Outputs of function blocks can not be
connected to each other (vertical shorts).

Operate and Comparison Blocks

Comparison blocks are programmed in the test zone, and operation blocks are

programmed in the action zone.

Name

Graphic
element

Function

Comparison block

Compares two operands, the output changes to 1
when the result is checked.
Size: one row by two columns

operation block

E .

Performs arithmetic and logic operations.
Size: one row by four columns

35011386 05/2009

420




Ladder Language

Special Ladder Instructions OPEN and SHORT

Introduction

The OPEN and SHORT instructions provide a convenient method for debugging
and troubleshooting Ladder programs. These special instructions alter the logic of a
rung by either shorting or opening the continuity of a rung as explained in the
following table.

Instruction Description List Instruction
OPEN At the beginning of the rung. LD 0
Within a rung: Creates a break in the AND 0
continuity of a ladder rung regardless of the
results of the last logical operation.
SHORT At the beginning of the rung. 1D 1
Within a rung: Allows the continuity to pass | OR 1
through the rung regardless of the results of
the last logical operation.

In List programming, the LD, OR and AND instructions are used to create the OPEN
and SHORT instructions using immediate values of 0 and 1 respectively.

Examples

The following are examples of using the OPEN and SHORT instructions.

%I0.1

%Q1.5

}i

%I0.9

-

s

%M3 %Q0.1

/{orEr—{

%016

{ M

LD
OR
ANDN
AND
ST

LD
OR

ST

%I0.1
%Q1.5
%M3

%Q0.1
%I0.9

%Q1.6

421

35011386 05/2009



Ladder Language

When no RESET input is required, as you cannot delete the link segment to the
function block R-input, use the OPEN element to permanently break the input

segment.
0,
%C0 BLE o0
OPEN R LD ‘
R
%M1 %Q0.1 LD %10.2
s pHHH|| ae
0610.2 %MO -
OUT_BLK
H b w
AND %M1
. ST %Q0.1
END BLK

35011386 05/2009

422



Ladder Language

Programming Advice

Handling Program Jumps

Use program jumps with care to avoid long loops that can increase scan time. Avoid
jumps to instructions that are located upstream. (An upstream instruction line
appears before a jump in a program. A downstream instruction line appears after a
jump in a program.).

Programming of Outputs

Output bits, like internal bits, should only be modified once in the program. In the
case of output bits, only the last value scanned is taken into account when the
outputs are updated.

Using Directly-Wired Emergency Stop Sensors

Sensors used directly for emergency stops must not be processed by the controller.
They must be connected directly to the corresponding outputs.

Handling Power Returns

Make power returns conditional on a manual operation. An automatic restart of the
installation could cause unexpected operation of equipment (use system bits %S0,
%S1 and %S9).

Time and Schedule Block Management
The state of system bit %S51, which indicates any RTC faults, should be checked.

Syntax and Error Checking

When a program is entered, TwidoSuite checks the syntax of the instructions, the
operands, and their association.

423 35011386 05/2009



Ladder Language

Additional Notes on Using Parentheses

Assignment operations should not be placed within parentheses:

%l10.0 %I0.1

%Q0.1

\ ||
% \ I
%10.2

o

%I0.3

S~

(H

%0Q0.0

N

(]

LD
AND
OR(

)
ST

%I0.0
%I0.1
%I0.2
%
%

%Q0.1

In order to perform the same function, the following equations must be programmed:

%Q0.1

%I10.3

(]

%Q0.0

%I0.0 %01
ﬂ | |
| I
%10.2
%I0.2
|

(]

LD
MPS
AND(
OR(
AND
)

)
ST

MPP
AND
ST

%I0.0
%I0.1
%I10.2
%I0.3
9%Q0.1

%I10.2
%(20.0

35011386 05/2009

424



Ladder Language

If several contacts are parellelized, they must be nested within each other or

completely separate:

%l0.0 %l0.1 %Il0.5

%Q0.1

4{ I | | | |
| I I
%02  %I0.3

—

o%l0.6  %I0.7

O]

%10.0 %l0.1 %I0.5

2600.1

\ 4{ \
\ \
%L0.2 %L0.4

425

35011386 05/2009



Ladder Language

The following schematics cannot be programmed:

%l0.0

%l0.1
| |

200.1

{

H|

%l0.4

|
%10.2

R

N
%I0.3

}_

]

N E%10.4

| g
%l0.0 %lI0.1 %l0.5 2600.1
| | /
— | | (]
%10.2 %I0.3

35011386 05/2009

426



Ladder Language

In order to execute schematics equivalent to those, they must be modified as

follows:
LD %I00
0,
%00  %I0.1 %Q0.1 ggD( ﬁg;
| N { (  %I0.
| | \ AND  %I0.3
%I10.2 %l0.3 %
}—{ OR(  %I0.4
AND  %I0.3
%I04 %103 )
— ST %Q0.1
LD %I0.0
0
%l10.0 %I0.1 %I0.5 %6020.1 AND( 0/010'1
| N ¥ p OR({  %I0.2
4{ | | o { AND  %I03
)
9%l10.2 %I10.3 AND %10 5
— OR(  %I0.2
AND  %I0.4
%I0.2 %l .4 )
)
ST %Q0.1

427

35011386 05/2009



Ladder Language

Ladder/List Reversibility

Introduction

Program reversibility is a feature of the TwidoSuite programming software that
provides conversion of application program sections from Ladder to List and from
List back to Ladder.

You can set the default display of programs: either List or Ladder format in user
preferences. You can toggle program sections between List and Ladder views.

NOTE: When switching between ladder and list views, only the rungs in the selected
section are reversed. This enables you to display a program with some sections in
ladder view and other sections in list view in the same window.

Understanding Reversibility

A key to understanding the program reversibility feature is examining the
relationship of a Ladder rung and the associated instruction List sequence:

e Ladder rung: A collection of Ladder instructions that constitute a logical
expression.

e List sequence: A collection of List programming instructions that correspond to
the Ladder instructions and represents the same logical expression.

The following illustration displays a common Ladder rung and its equivalent program
logic expressed as a sequence of List instructions.

%10.5 %00.4
\ It
4 | { LD %I0.5
OR %I04
%104 ST %Q0.4

4{

An application program is stored internally as List instructions, regardless if the
program is written in Ladder language or List language. TwidoSuite takes advantage
of the program structure similarities between the two languages and uses this
internal List image of the program to display it in the List and Ladder viewers and
editors as either a List program (its basic form), or graphically as a Ladder diagram,
depending upon the selected user preference.

35011386 05/2009

428



Ladder Language

Ensuring Reversibility
Programs created in Ladder can always be reversed to List. However, some List
logic may not reverse to Ladder. To ensure reversibility from List to Ladder, it is
important to follow the set of List programming guidelines in Guidelines for
Ladder/List Reversibility, page 430.

429 35011386 05/2009



Ladder Language

Guidelines for Ladder/List Reversibility

Instructions Required for Reversibility

The structure of a reversible function block in List language requires the use of the
following instructions:

e BLK marks the block start, and defines the beginning of the rung and the start of
the input portion to the block.

e OUT_BLK marks the beginning of the output portion of the block.

e END_BLK marks the end of the block and the rung.

The use of the reversible function block instructions are not mandatory for a properly
functioning List program. For some instructions it is possible to program in List which
is not reversible. For a description of non-reversible List programming of standard
function blocks, see Standard function blocks programming principles, page 481.

Non-Equivalent Instructions to Avoid

Avoid the use of certain List instructions, or certain combinations of instructions and
operands, which have no equivalents in Ladder diagrams. For example, the N
instruction (inverses the value in the Boolean accumulator) has no equivalent
Ladder instruction.

The following table identifies all List programming instructions that will not reverse

to Ladder.
List Instruction | Operand Description
JMPCN %L Jump Conditional Not
N none Negation (Not)
ENDCN none End Conditional Not

Unconditional Rungs

Programming unconditional rungs also requires following List programming
guidelines to ensure List-to-Ladder reversibility. Unconditional rungs do not have
tests or conditions. The outputs or action instructions are always executed.

35011386 05/2009 430



Ladder Language

Ladder List Rungs

The following diagram provides examples of unconditional rungs and the equivalent
List sequence.

%Q0.4
() LD 1
0,
%MWS =0 ST %Q04
LD 1
— [%MW35 = 0]
IMP  %L6
%16

Notice that each of the above unconditional List sequences begin with a load
instruction followed by a one, except for the JMP instruction. This combination sets
the Boolean accumulator value to one, and therefore sets the coil (store instruction)
to one and sets%MWS5 to zero on every scan of the program. The exception is the
unconditional jump List instruction (JMP %L6) which is executed regardless of the
value of the accumulator and does not need the accumulator set to one.

If a List program is reversed that is not completely reversible, the reversible portions
are displayed in the Ladder view and the irreversible portions are displayed as
Ladder List Rungs.

A Ladder List Rung functions just like a small List editor, allowing the user to view
and modify the irreversible parts of a Ladder program.

431

35011386 05/2009



Ladder Language

Program Documentation

Documenting Your Program

You can document your program by entering comments using the List and Ladder
editors:

e Use the List Editor to document your program with List Line Comments. These
comments may appear on the same line as programming instructions, or they
may appear on lines of their own.

e Use the Ladder Editor to document your program using rung headers. These are
found directly above the rung.

The TwidoSuite programming software uses these comments for reversibility. When
reversing a program from List to Ladder, TwidoSuite uses some of the List
comments to construct a rung header. For this, the comments inserted between List
sequences are used for rung headers.

Example of List Line Comments
The following is an example of a List program with List Line Comments.

---- ( * THIS IS THE TITLE OF THE HEADER FOR RUNG 0 *)
---- ( * THIS IS THE FIRST HEADER COMMENT FOR RUNG 0 *)
- ( * THIS IS THE SECOND HEADER COMMENT FOR RUNG 0 *)
0 LD %I10.0 (* THIS IS A LINE COMMENT )
1 OR %I0.1 (* ALINE COMMENT IS IGNORED WHEN REVERSING TO LADDER * )
2 ANDM %M10
3 ST M101
---- ( * THIS IS THE HEADER FOR RUNG 1 *)
--- (* THIS RUNG CONTAINS A LABEL * )
- ( * THIS IS THE SECOND HEADER COMMENT FOR RUNG 1 *)
--- ( * THIS IS THE THIRD HEADER COMMENT FOR RUNG 1 *)
—-- ( * THIS IS THE FOURTH HEADFR COMMENT FOR RUNG 1 +)
4 % LS
5 LD %MI01
6 [ %6MW20 = %KW2 * 16 |
---- ( * THIS RUNG ONLY CONTAINS A HEADER TITLE * )
7 LD %Q0.5
8 OR %l0. 3
9 ORR I. 13
10 ST %4Q0.5

35011386 05/2009 432



Ladder Language

Reversing List Comments to Ladder

When List instructions are reversed to a Ladder diagram, List Line Comments are
displayed in the Ladder Editor according to the following rules:

e The first comment that is on a line by itself is assigned as the rung header.

e Any comments found after the first become the body of the rung.

e Once the body lines of the header are occupied, then the rest of the line
comments between List sequences are ignored, as are any comments that are
found on list lines that also contain list instructions.

Example of Rung Header Comments
The following is an example of a Ladder program with rung header comments.

Enter your comments here. Enter your comments here
Erter your comments here, Erter your comments here.
@ LD SECTIONTITLE s S e S e
o 0
Aung 1 /n!OIO M}/HIO IWOl
i} 1/} o
%I0.1
—

Rung 2

iy Y e
w [7] ol GMINZ0 - %KNZE

|}

T ‘

Rung 3 %QO;S %fQO J

g

%03

Reversing Ladder Comments to List

When a Ladder diagram is reversed to List instructions, rung header comments are
displayed in the List Editor according to the following rules:

e Any rung header comments are inserted between the associated List sequences.

e Any labels (%Li: ) or subroutine declarations (SRi:) are placed on the next line
following the header and immediately prior to the List sequence.

e |[fthe List was reversed to Ladder, any comments that were ignored will reappear
in the List Editor.

433 35011386 05/2009



Instruction List Language

15

Subject of this Chapter
This chapter describes programming using Instruction List Language.

What's in this Chapter?
This chapter contains the following topics:

Topic Page
Overview of List Programs 435
Operation of List Instructions 437
List Language Instructions 438
Using Parentheses 441
Stack Instructions (MPS, MRD, MPP) 444

35011386 05/2009 434



Instruction List Language

Overview of List Programs

Introduction

A program written in List language consists of a series of instructions executed
sequentially by the controller. Each List instruction is represented by a single
program line and consists of three components:

e Line number
e Instruction code
e Operand(s)

Example of a List Program

Line Number

Instruction Code

The following is an example of a List program.

0 LD %I0.1
\q—____—____’-
0,
L st %Q0.3 0 LD %I0.1
2 LDN %MO
3 8T %Q0.2 —E Operand(s)
4 LDR %I10.2
5 QT %Q0.4 Instruction Code
6 LDF %10.3 Line Number
7 ST %Q0.5

Line numbers are generated automatically when you enter an instruction. Blank
lines and Comment lines do not have line numbers.

The instruction code is a symbol for an operator that identifies the operation to be
performed using the operand(s). Typical operators specify Boolean and numerical
operations.

For example, in the sample program above, LD is the abbreviation for the instruction
code for a LOAD instruction. The LOAD instruction places (loads) the value of the
operand %I0.1 into an internal register called the accumulator.

435

35011386 05/2009



Instruction List Language

Operand

There are basically two types of instructions:

e Test instructions
These setup or test for the necessary conditions to perform an action. For
example, LOAD (LD) and AND.

e Action instructions
These perform actions as a result of setup conditions. For example, assignment
instructions such as STORE (ST) and RESET (R).

An operand is a humber, address, or symbol representing a value that a program
can manipulate in an instruction. For example, in the sample program above, the
operand %I0.1 is an address assigned the value of an input to the controller. An
instruction can have from zero to three operands depending on the type of
instruction code.

Operands can represent the following:

e Controller inputs and outputs such as sensors, push buttons, and relays.
e Predefined system functions such as timers and counters.

e Arithmetic, logical, comparison, and numerical operations.

e Controller internal variables such as bits and words.

35011386 05/2009

436



Instruction List Language

Operation of List Instructions

Introduction

Operation

List instructions have only one explicit operand, the other operand is implied. The
implied operand is the value in the Boolean accumulator. For example, in the
instruction LD %Il0.1, %I0.1 is the explicit operand. An implicit operand is stored in
the accumulator and will be written over by value of %Il0.1.

A List instruction performs a specified operation on the contents of the accumulator
and the explicit operand, and replaces the contents of the accumulator with the
result. For example, the operation AND %l1.2 performs a logical AND between the
contents of the accumulator and the Input 1.2 and will replace the contents of the
accumulator with this result.

All Boolean instructions, except for Load, Store, and Not, operate on two operands.
The value of the two operands can be either True or False, and program execution
of the instructions produces a single value: either True or False. Load instructions
place the value of the operand in the accumulator, while Store instructions transfer
the value in the accumulator to the operand. The Not instruction has no explicit
operands and simply inverts the state of the accumulator.

Supported List Instructions

The following table shows a selection of instructions in List Instruction language:

Type of Instruction | Example Function

Bit instruction LD %M10 Reads internal bit %M10
Block instruction IN %TMO Starts the timer %TMO0
Word instruction [%MW10 := %MW50+100] | Addition operation
Program instruction SR5 Calls subroutine #5
Grafcet instruction -*-8 Step #8

437

35011386 05/2009



Instruction List Language

List Language Instructions

Introduction

Test Instructions

List language consists of the following types of instructions:

e Test Instructions
e Action instructions

e Function block instructions

This section identifies and describes the Twido instructions for List programming.

The following table describes test instructions in List language.

Name Equivalent Function
graphic
element
LD The Boolean result is the same as the status of the
4{ }7 operand.
LDN The Boolean result is the same as the reverse status of the
#/ # operand.
LDR The Boolean result changes to 1 on detection of the
4{"}7 operand (rising edge) changing from 0 to 1.
LDF The Boolean result changes to 1 on detection of the
4{"}7 operand (falling edge) changing from 1 to 0.
AND The Boolean result is equal to the AND logic between the
4{ ‘ ‘_ Boolean result of the previous instruction and the status of
the operand.
ANDN The Boolean result is equal to the AND logic between the
4{ ‘ Mﬁ Boolean result of the previous instruction and the reverse
status of the operand.
ANDR The Boolean result is equal to the AND logic between the
4{ P }7 Boolean result of the previous instruction and the detection
of the operand's rising edge (1 = rising edge).
ANDF The Boolean result is equal to the AND logic between the
4‘ N }7 Boolean result of the previous instruction and the detection
of the operand's falling edge (1 = falling edge).
OR The Boolean result is equal to the OR logic between the

Boolean result of the previous instruction and the status of
the operand.

35011386 05/2009

438




Instruction List Language

Action instructions

Name Equivalent Function
graphic
element
AND( 4( ‘ ‘ }j Logic AND (8 parenthesis levels)
OR( ‘ ‘ T Logic OR (8 parenthesis levels)
XOR, XORN, Exclusive OR
XORR, XORF # HOR %
4{XORN}*
—{XORR}—
4{XORF}*
MPS . Switching to the coils.
MRD — o
MPP v ( :
N - Negation (NOT)

The following table describes action instructions in List language.

Name Equivalent Function
graphic
element
ST The associated operand takes the value of the test zone
—{ = result.
STN The associated operand takes the reverse value of the test
—{ zone result.
S The associated operand is set to 1 when the result of the
- test zone is 1.
R The associated operand is set to 0 when the result of the
R test zone is 1.

439

35011386 05/2009




Instruction List Language

Name Equivalent Function
graphic
element
JMP Connect unconditionally to a labeled sequence, upstream
->>0Li or downstream.
SRn Connection at the beginning of a subroutine.
->>%5SRi
RET Return from a subroutine.
<RET>
END End of program.
<END>
ENDC End of the conditioned program at a Boolean result of 1.
<ENDC>
ENDCN End of the conditioned program at a Boolean result of 0.
<ENDCN=>

Function Block Instructions

The following table describes function blocks in List language.

Name

Equivalent
graphic
element

Function

Timers, counters,
registers, and so on.

For each of the function blocks, there are
instructions for controlling the block.

A structured form is used to hardwire the block
inputs and outputs directly.

Note: Outputs of function blocks can not be
connected to each other (vertical shorts).

35011386 05/2009

440




Instruction List Language

Using Parentheses

Introduction

parentheses.

Example Using an AND Instruction

In AND and OR logical instructions, parentheses are use to specify divergences in
Ladder Editors. Parentheses are associated with instructions, as follows:

e Opening the parentheses is associated with the AND or OR instruction.
e Closing the parentheses is an instruction which is required for each open

The following diagrams are examples of using a parentheses with an AND
instruction: AND(...).

%I0.0  %l0.1

%Q0.0

=

|

%l0.2

%I0.0  %l0.1
||

H

%Q0.1

ninni

=

LD
AND
OR
ST

LD
AND(
OR

ST

%I0.0
%I0.1
%I10.2
%Q0.0

%I10.0
%10.1
%10.2

%Q0.1

Example Using an OR Instruction

The following diagrams are examples of using parentheses with an OR instruction:
OR(...).

%10.0 %%10.1
|

%Q0.0

| |
1
%02 %I0.3

—

LD
AND
OR(
AND

ST

%I10.0
%I10.1
%I10.2
%I10.3

%Q0.0

441

35011386 05/2009



Instruction List Language

Modifiers

The following table lists modifiers that can be assigned to parentheses.

Modifier | Function Example

N Negation AND(N or OR(N

F Falling edge AND(F or OR(F

R Rising edge AND(R or OR(R

[ Comparison See Comparison Instructions, page 509

Nesting Parenthesis
It is possible to nest up to eight levels of parentheses.

Observe the following rules when nesting parentheses:

e Each open parentheses must have a corresponding closed parentheses.

e Labels (%Li:), subroutines (SRi:), jump instructions (JMP), and function block

instructions must not be placed in expressions between parentheses.
e Store instructions ST, STN, S, and R must not be programmed between

parentheses.
e Stack instructions MPS, MRD, and MPP cannot be used between parentheses.

35011386 05/2009

442



Instruction List Language

Examples of Nesting Parentheses

The following diagrams provide examples of nesting parentheses.

o . . LD %10.0
e ot Q00 AND(  %I0.1
| } | () OR(N  %10.2
%10.2  %M3 AND  %M3

L )

! ! )
ST %Q0.0
LD %I0.1
%[0 %I0.2 %03 %I04 %Q0.0 AND( %4102
#} H H H { AND  %I03
%I0.5 %l0.6 OR( 2510.5
AND  %I0.6

}7

)
%107 %I0.8 AND  %I0.4
}_{ OR(  %I0.7
AND  %I038

)

)
ST %Q0.0

443

35011386 05/2009



Instruction List Language

Stack Instructions (MPS, MRD, MPP)

Introduction

The Stack instructions process routing to coils.The MPS, MRD, and MPP
instructions use a temporary storage area called the stack which can store up to

eight Boolean expressions.

NOTE: These instructions can not be used within an expression between

parentheses.

Operation of Stack Instructions

The following table describes the operation of the three stack instructions.

Instruction | Description

Function

MPS Memory Push onto stack

Stores the result of the last logical instruction
(contents of the accumulator) onto the top of
stack (a push) and shifts the other values to the
bottom of the stack.

MRD Memory Read from stack

Reads the top of stack into the accumulator.

MPP Memory Pop from stack

Copies the value at the top of stack into the
accumulator (a pop) and shifts the other values
towards the top of the stack.

Examples of Stack Instructions

The following diagrams are examples of using stack instructions.

%I0.0 %M1 %510.1 26Q0.0
e || /

— 1 5 | (

MPS %02 26Q0.1

h— }% —

MRD %I0.3 26Q0.2

97

—

MFP %I04 %Q0.3
o F——

LD %10.0
AND %M1
MPS

AND %10.1
ST %Q0.0
MRD

AND 9%10.2
ST %Q0.1
MRD

AND %I0.3
ST %Q0.2
MPP

AND %10.4
ST %0Q0.3

35011386 05/2009

444




Instruction List Language

Examples of Stack Operation

The following diagrams display how stack instructions operate.

%l0.0

%I0.1  %I0.3
Ny
%MO

%l0.4

%M10

%QO 0

%M1 %QO 1
%Q0.2
%00.3

——(H

LD
MPS
AND
MP$
AND(
OR

ST
MPP
ANDN
ST
MRD
AND
ST
MPP
AND
ST

%I0.0

W N llllll
%103 \—' ......

% MO

%Q0.0 4

i1 (] [ IEEEEEN
%Q0.1

oat04 bt LTI T] ]
%Q0.2 ‘

445

35011386 05/2009



Grafcet

16

Subject of this Chapter

This chapter describes programming using Grafcet Language.

What's in this Chapter?
This chapter contains the following topics:

Topic Page
Description of Grafcet Instructions 447
Description of Grafcet Program Structure 452
Actions Associated with Grafcet Steps 455
35011386 05/2009 446




Grafcet

Description of Grafcet Instructions

Introduction
Grafcet instructions in TwidoSuite offer a simple method of translating a control
sequence (Grafcet chart).

The maximum number of Grafcet steps depend on the type of Twido controller. The
number of steps active at any one time is limited only by the total number of steps.

For the TWDLCAA10DRF and the TWDLCAA16DRF, steps 1 through 62 are
available. Steps 0 and 63 are reserved for pre- and post-processing. For all other
controllers, steps 1 through 95 are available.

447 35011386 05/2009



Grafcet

Grafcet Instructions

The following table lists all instructions and objects required to program a Grafcet

chart:
Graphic Transcription in Function
representation (1) TwidoSuite language
lllustration:
Initial step == Start the initial step (2)
#i Activate step i after deactivating the
—  Transition current step
- Start step i and validate the associated
Step transition (2)
# Deactivate the current step without
activating any other steps
#Di Deactivate step i and the current step
=*= POST Start post-processing and end
sequential processing
% Xi Bit associated with step i, can be tested
and written (maximum number of steps
depends on controller)
LD %Xi, LDN %Xi Test the activity of step i
Xi AND %Xi, ANDN %X:i,
— OR %Xi, ORN %Xi
XOR %Xi, XORN %Xi
S %Xi Activate step i
Xi
_<S>_ R %Xi Deactivate step i
Xi

—(R—

(1) The graphic representation is not taken into account.

(2) The first step =*=i or -*-i written indicates the start of sequential processing and
thus the end of preprocessing.

35011386 05/2009

448




Grafcet

Grafcet Examples

Linear sequence:

— 2%000.1

%010.1

2 /= %Qo2

-+ %0l0.2

3 — %Q03

%010.5 %821

—
%l0.1 2

%l0.3

%0X1 260Q0.1

A

%0X2 %0Q0.2

H -

%0X3 %Q0.3

N E—

LD  %I0.5
ST %S21
=*= 1

LD  %I0.1
# 2

ke 2

LD  %I0.2
# 3

ko 3

LD  %I03
4 1

=*= POST
LD %Xl
ST %Q0.1
LD  %X2
ST %Q02
LD  %X3
ST %Q03

Not supported

Twido Ladder
Language program

Twido Instruction
List program

449

35011386 05/2009



Grafcet

Alternative seque

nce:

| %loa

%I0.5

_| %lI0.6

2%I0.3

# (

%l0.4

Ej—

%10.5

4{ (

%10.6

#}—<

R 4

LD %I10.3
# 5

LD %10.4
# 6

k. 5

LD %10.5
# 7

k. 6

LD %I0.6
# 7

Not supported

Twido Ladder
Language program

Twido Instruction
List program

35011386 05/2009

450



Grafcet

Simultaneous sequences:

8
%I0.7
= 1
9 10
| %l0.8 | wl0.9
11 12
—_————
| %MD
13

.8
%l0.7 9
= #1
10
#]
%I0.8 11
—
*.10
%I0.9 12

— ")
[-*-T11]
%MO  %X12 12

-

13

#—

%M0  %X11 11

)

H Tﬁry
s

k. 8
LD %I0.7
# 9
# 10

e 9
LD %I10.8
# 11

-*- 10
LD %I10.9
# 12

-*- 11
LD %MO
AND %X12
#D 12
# 13

-*- 12
LD %MO
AND %X11
#D 11
# 13

Not supported

Twido Ladder
Language program

Twido Instruction

List program

NOTE: For a Grafcet Chart to be operational, at least one active step must be
declared using the =*=i instruction (initial step) or the chart should be pre-positioned
during preprocessing using system bit %S23 and the instruction S %Xi.

451

35011386 05/2009



Grafcet

Description of Grafcet Program Structure

Introduction
A TwidoSuite Grafcet program has three parts:

e Preprocessing
e Sequential processing
e Post-Processing

Preprocessing

Preprocessing consists of the following:
Power returns

Faults

Changes of operating mode
Pre-positioning Grafcet steps

Input logic

The rising edge of input %I10.6 sets bit %S21 to 1. This disables the active steps and
enables the initial steps.

%10.6 %22 000 LDN  %I0.6
/| (s 001 S %522
s s 002 ST %MO
9GMO 003 LDR  %I06
E———— 004 S %521
%10.6 %821
| ue

Preprocessing begins with the first line of the program and ends with the first
occurrence of a "=* =" or "- * -" instruction.

35011386 05/2009 452



Grafcet

Three system bits are dedicated to Grafcet control: %S21, %S22 and %S23. Each
of these system bits are set to 1 (if needed) by the application, normally in
preprocessing. The associated function is performed by the system at the end of
preprocessing and the system bit is then reset to 0 by the system.

System Bit Name Description

%S21 Grafcet All active steps are deactivated and the initial steps are
initialization activated.

%S22 Grafcet re- All steps are deactivated.
initialization

%S23 Grafcet pre- This bit must be set to 1 if %Xi objects are explicitly

positioning

written by the application in preprocessing. If this bit is
maintained to 1 by the preprocessing without any
explicit change of the %Xi objects, Grafcet is frozen (no
updates are taken into account).

Sequential Processing
Sequential processing takes place in the chart (instructions representing the chart):

e Steps

e Actions associated with steps

e Transitions

e Transition conditions

Example:
== 1
. . 005 == |
4,10.‘2 A)‘Ioﬁ 2 006 LD 210.2
; (# 007  ANDN %I0.3
ﬁ 1 ] 008 # 2
%10-‘3 ﬂr‘IOiZ [3 009 LD %10.3
— /] (#) 010  ANDN 9%I0.2
ol # 3
s 012 - 2
013 LD %10.4
04104 1 014 # 1
| / 015 % 3
—{ | (#)}— 016 LD %I0.5
017 # 1
RN
%]l0.5 1
| /
— | S

453

35011386 05/2009



Grafcet

Post-Processing

Sequential processing ends with the execution of the "=* = POST" instruction or with

the end of the program.

Post-processing consists of the following:
e Commands from the sequential processing for controlling the outputs
e Safety interlocks specific to the outputs

Example:
== POST
%X1 %Q0.1 018 —*— POST
4< I ( 019 LD %X1
! 020 ST %Q0.1
%X2 %Q0.2 0zL LD :/OX2
% | (] 022 ST %6(Q0.2
| L 023 LD %33
024  OR( %M1
0, 0,
A’Xﬁ 4’?03 025 ANDN %I0.2
ﬂ | { 026 AND  %I0.7
027 )
%M1 %I0.2  %I0.7 028 ST %Q0.3
b

35011386 05/2009

454



Grafcet

Actions Associated with Grafcet Steps

Introduction

A TwidoSuite Grafcet program offers two ways to program the actions associated
with steps:

e |n the post-processing section
e Within List instructions or Ladder rungs of the steps themselves

Associating Actions in Post-Processing

If there are security or running mode constraints, it is preferable to program actions
in the post-processing section of a Grafcet application. You can use Set and Reset
List instructions or energize coils in a Ladder program to activate Grafcet steps

(%Xi).
Example:
%Xl %Q0.1 018 =*=  POST
\ { 019 LD %X1
— (] 020 ST 9%Q0.1
%eX2 %002 021 LD %X2
| / 022 ST %Q0.2
% \ \ 023 LD %X3
v}
%X %003 024 ST %Q0.3
\ {
% \ | P

Associating Actions from an Application

You can program the actions associated with steps within List instructions or Ladder
rungs. In this case, the List instruction or Ladder rung is not scanned unless the step
is active. This is the most efficient, readable, and maintainable way to use Grafcet.

455 35011386 05/2009



Grafcet

Example:

#o 3
%Q0.5
(s
4
e E—C
]
2%400.5

"

020
021
022
023
024
025
026
027
028
029

%Q0.5
%M10

%Q0.5

35011386 05/2009

456



Grafcet

457 35011386 05/2009



Description of Instructions and

Functions

IV

Subject of this Part

This part provides detailed descriptions about basic and advanced instructions and
system bits and words for Twido languages.

What's in this Part?

This part contains the following chapters:

Chapter Chapter Name Page
17 Basic Instructions 460
18 Advanced Instructions 530
19 System Bits and System Words 718

35011386 05/2009

458




Instructions and Functions

459 35011386 05/2009



Basic Instructions

17

Subject of this Chapter

This chapter provides details about instructions and function blocks that are used to

create basic control programs for Twido controllers.

What's in this Chapter?

This chapter contains the following sections:

Section Topic Page
171 Boolean Processing 461
17.2 Basic Function Blocks 478
17.3 Numerical Processing 502
17.4 Program Instructions 522

35011386 05/2009

460




Basic Instructions

17.1 Boolean Processing

Aim of this Section

This section provides an introduction to Boolean processing including descriptions
and programming guidelines for Boolean instructions.

What's in this Section?
This section contains the following topics:

Topic Page
Boolean Instructions 462
Understanding the Format for Describing Boolean Instructions 464
Load Instructions (LD, LDN, LDR, LDF) 466
Assignment instructions (ST, STN, R, S) 468
Logical AND Instructions (AND, ANDN, ANDR, ANDF) 470
Logical OR Instructions (OR, ORN, ORR, ORF) 472
Exclusive OR, instructions (XOR, XORN, XORR, XORF) 474
NOT Instruction (N) 476

461 35011386 05/2009



Basic Instructions

Boolean Instructions

Introduction

Boolean instructions can be compared to Ladder language elements. These
instructions are summarized in the following table.

Item Instruction Example Description

Test elements The Load (LD) LD %I0.0 Contact is closed when bit
instruction is equivalent %I0.0 is at state 1.
to an open contact.

Action elements The Store (ST) ST %Q0.0 The associated bit object
instruction is equivalent takes a logical value of the bit
to a coil. accumulator (result of

previous logic).

The Boolean result of the test elements is applied to the action elements as shown
by the following instructions.

LD %I0.0
AND %I0.1
ST %Q0.0

Testing Controller Inputs

Boolean test instructions can be used to detect rising or falling edges on the
controller inputs. An edge is detected when the state of an input has changed
between "scan n-1" and the current "scan n". This edge remains detected during the
current scan.

Rising Edge Detection
The LDR instruction (Load Rising Edge) is equivalent to a rising edge detection
contact. The rising edge detects a change of the input value from 0 to 1.

A positive transition sensing contact is used to detect a rising edge as seen in the
following diagram.

%l10.0
LDR %I0.0 —( P}f P: Positive transition sensing contact

35011386 05/2009 462



Basic Instructions

Falling Edge Detection

The LDF instruction (Load Falling Edge) is equivalent to a falling edge detection
contact. The falling edge detects a change of the controlling input from 1 to 0.

A negative transition sensing contact is used to detect a falling edge as seen in the
following diagram.

%l[0.0
LDF %I10.0 {N‘f N: Negative transition sensing contact

Edge Detection

The following table summarizes the instructions and timing for detecting edges:

Edge Test Instruction Ladder Timing diagram
diagram

Rising edge LDR %I0.0

Rising edge
%I0.0 _—
# P % %10.0 time
Boolean T=1 controller
result scan
time
Falling edge LDF %I0.0
Falling edge
%10.0
#N‘i %10.0 time
L
Boolean
result T=1 controller
scan
time

NOTE: It is now possible to apply edge instructions to the %Mi internal bits.

463 35011386 05/2009



Basic Instructions

Understanding the Format for Describing Boolean Instructions

Introduction
Each Boolean instruction in this section is described using the following information:

Brief description

Example of the instruction and the corresponding ladder diagram
List of permitted operands

Timing diagram

The following explanations provide more detail on how Boolean instructions are
described in this section.

Examples
The following illustration shows how examples are given for each instruction.

(ﬁ/uIO.l %Qo).s_l LD  %I0.1 "‘)
[ ST %003
¥aM0 #0Q0.2 LDN %MO
v — ST %0Q0.2
jgo.l %0Q0.4 LDR %I01
26103 26Q0.5 ST Q0.4
iy " LDF %I0.3
ST %Q0.5
Ladder diagram equivalents List instructions

Permitted Operands

The following table defines the types of permitted operands used for Boolean
instructions.

Operand Description

0/1 Immediate value of 0 or 1

%l Controller input %li.j

%Q Controller output %Qi.j

%M Internal bit %Mi

%S System bit %Si

%X Step bit %Xi

%BLK.x Function block bit (for example, %TMi.Q)

Yo:Xk Word bit (for example, %MWi:Xk)

[ Comparison expression (for example, [%MWi<1000])

35011386 05/2009 464



Basic Instructions

Timing Diagrams

The following illustration shows how timing diagrams are displayed for each
instruction.

%I10.1 <_
Qutput state
] \-/ .
%Q0.3 Timing diagrams for the four types of
Timing diagram for the Load instructions are grouped together.

LD instruction

465 35011386 05/2009



Basic Instructions

Load Instructions (LD, LDN, LDR, LDF)

Introduction

Load instructions LD, LDN, LDR, and LDF correspond respectively to the opened,

closed, rising edge, and falling edge contacts (LDR and LDF are used only with

controller inputs and internal words, and for AS-Interface and PDO CANopen slave

inputs).

Examples

The following diagrams are examples of Load instructions.

%0Q0.3
[ LD  %I0.1
%00.2 5T %Q0.3
- LDN %MO
/

L ST %Q02
704 LDR  %I0.2
e ST %Q0.4
%00.5 LDF %I0.3
. 0,
(] ST %Q0.5

Permitted Operands

The following table lists the types of load instructions with Ladder equivalents and
permitted operands.

List Instruction

Ladder Equivalent

Permitted Operands

LD

-

0/1, %I, %IA, %IWCx.y.z:Xk, %Q, %QA,
%M, %S, %X, %BLK.X, Y%:Xk,[

LDN

-

0/1, %I, %IA, %IWCX.y.z:Xk, %Q, %QA,
%M, %S, %X, %BLK.X, Y%:XK,[

LDR

-

%l, %IA, %M

LDF

4

%l, %IA, %M

35011386 05/2009

466



Basic Instructions

Timing diagram

The following diagram displays the timing for Load instructions.

%Q0.3

%Q0.2

%Q0.4

%Q0.5

467

35011386 05/2009



Basic Instructions

Assignment instructions (ST, STN, R, S)

Introduction

The assignment instructions ST, STN, S, and R correspond respectively to the

direct, inverse, set, and reset coils.

Examples

The following diagrams are examples of assignment instructions.

4<

%ol0.1

%l10.2

%Q0.3
[ LD %I0.1
[ ST %Q0.3

R0 STN  %Q0.2
/ 0 .
7 S %Q0.4

%00 4
(s LD %102

R %Q0.4

%(0.4

/R*)i

Permitted Operands

The following table lists the types of assignment instructions with ladder equivalents
and permitted operands.

List Instruction

Ladder Equivalent

Permitted Operands

ST

%Q,%QA,%M,%S,%BLK.x,%*:Xk

STN

%Q,%QA%M,%S,%BLK.x,%*:Xk

%Q,%QA, %M, %S, %X, %BLK.X,%*:Xk

%Q,%QA,%M,%S,%X,%BLK.X,%*:Xk

35011386 05/2009

468



Basic Instructions

Timing diagram
The following diagram displays the timing for assignment instructions.

469 35011386 05/2009



Basic Instructions

Logical AND Instructions (AND, ANDN, ANDR, ANDF)

Introduction

The AND instructions perform a logical AND operation between the operand (or its

inverse, or its rising or falling edge) and the Boolean result of the preceding

instruction.

Examples

The following diagrams are examples of logic AND instructions.

%[0l %ML

H

%M2  %I0.2

H

%l03 %I04

— [

%M3  %I0.5

H |

%Q0.3 LD %10.1

AND  %MI1
I ST 2%Q0.3

%QD.2 LD %M2
{ ANDN %102
(O

ST %Q0.2

%Q0.4 LD %I10.3
(sy— ANDR  %10.4
. S %Q0.4

7eQ) 3 LD 9%M3
{s)— ANDE  %I0.5
S %Q0.5

Permitted Operands

The following table lists the types of AND instructions with ladder equivalents and
permitted operands.

List Instruction

Ladder Equivalent

Permitted Operands

AND

4 H

0/1, %I, %IA, %Q, %QA, %M, %S, %X,
%BLK.x, %*:Xk, [

ANDN

~ H-

0/1, %I, %IA, %Q, %QA, %M, %S, %X,
%BLK.x, %*:Xk, [

ANDR

bl

%l, %lA, %M

ANDF

= -

%l, %lA, %M

35011386 05/2009

470



Basic Instructions

Timing diagram

The following diagram displays the timing for the AND instructions.

AND

%10.1

ANDN

%M2

ANDR

ANDF

%10.3

%M1

%10.2

%10.4

%Q0.3

%I0.5

471

35011386 05/2009



Basic Instructions

Logical OR Instructions (OR, ORN, ORR, ORF)

Introduction

The OR instructions perform a logical OR operation between the operand (or its

inverse, or its rising or falling edge) and the Boolean result of the preceding

instruction.

Examples

The following diagrams are examples of logic OR instructions.

%I0.1 %6(30.3
- | (H
%M1
j,Mb %(0.2
- | (
%I0.2

/
jM}; %Q0.4
- 5]
%I04

P
%I0.5 %6005
- (5]
%I0.6
X

LD
OR
ST

LD
ORN
ST

LD
ORR

LDF
ORF

%I0.1
%M1
%Q0.3

%M2
%10.2
%Q0.2

%M3
%10.4
%Q0.4

%I0.5
%10.6
2%Q0.5

35011386 05/2009

472



Basic Instructions

Permitted Operands

The following table lists the types of OR instructions with Ladder equivalents and
permitted operands.

Timing diagram

List Instruction

Ladder Equivalent

Permitted Operands

OR

0/1, %1, %IA, %Q, %QA, %M, %S, %X, %BLK.x,

%*: Xk

Bty
-

ORN 0/1, %I, %IA, %Q, %QA, %M, %S, %X, %BLK.X,
Yoo: Xk
i
ORR %l, %lA, %M
N
b
ORF %l, %lA, %M
4(
4{

The following diagram displays the timing for the OR instructions.

OR

ORN

ORR ORF

473

35011386 05/2009



Basic Instructions

Exclusive OR, instructions (XOR, XORN, XORR, XORF)

Introduction

The XOR instructions perform an exclusive OR operation between the operand (or

its inverse, or its rising or falling edge) and the Boolean result of the preceding

instruction.

Examples

The following example shows the use of XOR instructions.

Schematic using XOR instruction:

9%10.1 96M1 %Q0.3 LD  %I0.1
| IRl / XOR %M1
! [ \ ST %Q0.3
Schematic NOT using XOR instruction ;
%I10.1 %M1 %Q0.3 LD 00101
} } /} { ANDN %M1
OR( %Ml
0, 0,
eML %101 ANDN  %I0.1
— )
ST %Q0.3

Permitted Operands

The following table lists the types of XOR instructions and permitted operands.

List instruction

Permitted Operands

XOR

%l, %lA, %Q, %QA, %M, %S, %X,
%BLK.x, %*:Xk

XORN

%l, %lA, %Q, %QA, %M, %S, %X,
%BLK.x, %*:Xk

XORR

%l, %lA, %M

XORF

%l, %lA, %M

35011386 05/2009

474



Basic Instructions

Timing Diagram

The following diagram displays the timing for the XOR instructions.

XOR

Special Cases

The following are special precautions for using XOR instructions in Ladder

programs:

e Do not insert XOR contacts in the first position of a rung.

e Do not insert XOR contacts in parallel with other ladder elements (see the

following example.)

As shown in the following example, inserting an element in parallel with the XOR

contact will generate a validation error.

%M13

%I1.5

%Q1.10

{

}XOR}

%MI10

475

35011386 05/2009



Basic Instructions

NOT Instruction (N)

Introduction
The NOT (N) instruction negates the Boolean result of the preceding instruction.

Example
The following is an example of using the NOT instruction.

LD 9%10.1
OR %M2
ST %Q0.2
N

AND  %M3
ST %Q0.3

NOTE: The NOT instruction is not reversible.

Permitted Operands
Not applicable.

35011386 05/2009 476



Basic Instructions

Timing Diagram

The following diagram displays the timing for the NOT instruction.

NOT

%10.1

%M2

%Q0.2

%M3

%Q0.3

477

35011386 05/2009



Basic Instructions

17.2 Basic Function Blocks

Aim of this Section

This section provides descriptions and programming guidelines for using basic
function blocks.

What's in this Section?
This section contains the following topics:

Topic Page
Basic Function Blocks 479
Standard function blocks programming principles 481
Timer Function Block (%TMi) 483
TOF Type of Timer 485
TON Type of Timer 486
TP Type of Timer 487
Programming and Configuring Timers 488
Up/Down Counter Function Block (%Ci) 491
Programming and Configuring Counters 494
Shift Bit Register Function Block (%SBRi) 496
Step Counter Function Block (%SCi) 499

35011386 05/2009 478




Basic Instructions

Basic Function Blocks

Introduction

Function blocks are the sources for bit objects and specific words that are used by
programs. Basic function blocks provide simple functions such as timers or up/down
counting.

Example of a Function Block
The following illustration is an example of an up/down Counter function block.

%Ci1
—1r E—
5 ADJY D
%Ci.P 9999

Up/down counter block

Bit Objects
Bit objects correspond to the block outputs. These bits can be accessed by Boolean
test instructions using either of the following methods:

e Directly (for example, LD E) if they are wired to the block in reversible
programming (see Standard function blocks programming principles, page 481).
e By specifying the block type (for example, LD %Ci.E).

Inputs can be accessed in the form of instructions.

Word Objects
Word objects correspond to specified parameters and values as follows:

e Block configuration parameters: Some parameters are accessible by the
program (for example, pre-selection parameters) and some are inaccessible by
the program (for example, time base).

e Current values: For example, %Ci.V, the current count value.

479 35011386 05/2009



Basic Instructions

Accessible Bit and Word Objects

The following table describes the Basic function blocks bit and word objects that can
be accessed by the program.

Basic Symbol |Range |Types of | Description Address | Write
Function () Objects Access
Block
Timer % TMi 0-127 | Word Current Value %TMi.V | no
Preset value %TMi.P  |yes
Bit Timer output %TMi.Q |no
Up/Down %Ci 0-127 |Word Current Value | %Ci.V no
Counter Preset value %Ci.P yes
Bit Underflow %Ci.E no
output (empty)
Preset output %Ci.D no
reached
Overflow output | %Ci.F no
(full)
35011386 05/2009 480



Basic Instructions

Standard function blocks programming principles

Introduction

Use one of the following methods to program standard function blocks:

e Function block instructions (for example, BLK %TM2): This reversible method of
programming ladder language enables operations to be performed on the block
in a single place in the program.

e Specific instructions (for example, CU %Ci): This non-reversible method enables
operations to be performed on the block’s inputs in several places in the program
(for example, 1ine 100 CU %C1, line 174 CD %Cl1, line 209 LD %C1.D).

Reversible Programming
Use instructions BLK, OUT_BLK, and END_BLK for reversible programming:

e BLK: Indicates the beginning of the block.
e OUT_BLK: Is used to directly wire the block outputs.
e END_BLK: Indicates the end of the block.

Example with Output Wiring

The following example shows reversible programming of a counter function block
with wired outputs.

%l1.1
4{N}> R %Cs E BLK %CS
LDF %I1.1
s %M1 %Q0.4 R Input
%I1.2 %MO ADJY # ( LD %Il2 Processing
% ’» cu 2%Ci.P 9999 AND  %MO
cU B
. i OUT_BLK
0 Processing
ST %Q0.4
END_BLK

481 35011386 05/2009



Basic Instructions

Example without Output Wiring

This example shows reversible programming of a counter function block without
wired outputs.

%ll.1

4{1\1}» R %8 E BLK  %CS —
LDF  %l1.1
1° R Input
eoll.2 %MD ADIY p LD %Il Processing
# ‘4{ |> cu %CLP 9999 AND %M
cu
END_BLK
12 FIT LD  %C8D
AND oM | OutPut.
%C8.D %Ml %4Q0.4 qT 9%Q0.4 Processing

H

| { ]

NOTE: Only test and input instructions on the relevant block can be placed between
the BLK and OUT_BLK instructions (or between BLK and END_BLK when
OUT_BLK is not programmed).

35011386 05/2009 482



Basic Instructions

Timer Function Block (%TMi)

Introduction
There are three types of Timer function blocks:
e TON (Timer On-Delay): this type of timer is used to control on-delay actions.
e TOF (Timer Off-Delay): this type of timer is used to control off-delay actions.
e TP (Timer - Pulse): this type of timer is used to create a pulse of a precise
duration.
The delays or pulse periods are programmable and may be modified using the
TwidoSuite.
lllustration
The following is an illustration of the Timer function block.
%TMi
—IN Qi —
TYPE TON
TB 1min
ADIY
%TMi.P 9999
Timer function block
Parameters

The Timer function block has the following parameters:

Parameter Label Value
Timer number %TMi 0 to 63: TWDLCAA10DRF and TWDLCAA16DRF
0 to 127 for all other controllers.
Type TON * Timer On-Delay (default)
TOF * Timer Off-Delay
TP * pulse (monostable)
Time base B 1 min (default), 1's, 100 ms, 10 ms, 1 ms

483 35011386 05/2009



Basic Instructions

Parameter Label Value

Current Value %TMi.V Word which increments from 0 to %TMi.P when the timer
is running. May be read and tested, but not written by the
program. %TMi.V can be modified using the Animation
Tables Editor.

Preset value %TMi.P 0 - 9999. Word which may be read, tested, and written by
the program. Default value is 9999. The period or delay
generated is % TMi.P x TB.

Animation Tables |Y/N Y: Yes, the preset % TMi.P value can be modified using the

Editor Animation Tables Editor.

N: No, the preset %TMi.P value cannot be modified.

Enable (or IN Starts the timer on rising edge (TON or TP types) or falling

instruction) input edge (TOF type).

Timer output Q Associated bit %TMi.Q is set to 1 depending on the

function performed: TON, TOF, or TP

NOTE: The larger the preset value, the greater the timer accuracy.

35011386 05/2009

484



Basic Instructions

TOF Type of Timer

Introduction

Use the TOF (Timer Off-Delay) type of timer to control off-delay actions. This delay
is programmable using TwidoSuite.

Timing Diagram
The following timing diagram illustrates the operation of the TOF type timer.

Operation
The following table describes the operation of the TOF type timer.

Phase Description
1 The current value %TMi.V is set to 0 on arising edge at input IN, even if the timer
is running.

The %TMi.Q output bit is set to 1 when a rising edge is detected at input N.

The timer starts on the falling edge of input IN.

The current value %TMi.V increases to % TMi.P in increments of one unit for
each pulse of the time base TB.

5 The %TMi.Q output bit is reset to 0 when the current value reaches %TMi.P.

485 35011386 05/2009



Basic Instructions

TON Type of Timer

Introduction

The TON (Timer On-Delay) type of timer is used to control on-delay actions. This
delay is programmable using the TwidoSuite.

Timing Diagram
The following timing diagram illustrates the operation of the TON type timer.

Operation
The following table describes the operation of the TON type timer.

Phase Description
1 The timer starts on the rising edge of the IN input.
2 The current value %TMi.V increases from 0 to %TMi.P in increments of one unit

for each pulse of the time base TB.

The %TMi.Q output bit is set to 1 when the current value has reached %TMi.P.

The %TMi.Q output bit remains at 1 while the IN input is at 1.

When a falling edge is detected at the IN input, the timer is stopped, even if the
timer has not reached %TMi.P, and %TMi..V is set to 0.

35011386 05/2009 486



Basic Instructions

TP Type of Timer

Introduction

The TP (Timer - Pulse) type of timer is used to create pulses of a precise duration.
This delay is programmable using the TwidoSuite.

Timing Diagram
The following timing diagram illustrates the operation of the TP type timer.

Operation
The following table describes the operation of the TP type timer.

Phase Description

1 The timer starts on the rising edge of the IN input. The current value %TMi..V is
set to 0 if the timer has not already started.

The %TMi.Q output bit is set to 1 when the timer starts.

The current value % TMi.V of the timer increases from 0 to %TMi.P in increments
of one unit per pulse of the time base TB.

4 The %TMi.Q output bit is set to 0 when the current value has reached %TMi.P.

The current value %TMi.V is set to 0 when %TMi.V equals %TMi.P and input IN
returns to 0.

6 This timer cannot be reset. Once %TMi.V equals %TMi.P, and input IN is 0, then
%TMi.V is set to 0.

487 35011386 05/2009




Basic Instructions

Programming and Configuring Timers

Introduction

Examples

Configuration

Timer function blocks (%TMi) are programmed in the same way regardless of how

they are to be used. The timer function (TON, TOF, or TP) is selected during
configuration.

The following illustration is a timer function block with examples of reversible and
non-reversible programming.

%I0.1

H

%TMi
IN Q

TYPE TON
TB 1lmin
ADIY
%TMi.P 9999

%003

Reversible programming

BLK  %TMi1

LD %I0.1
IN

OUT BLK

LD Q

ST %Q0.3
END BLK

Non-Reversible programming

LD
IN
LD
ST

%I0.1

% TMI

% TM1.Q
%Q0.3

The following parameters must be entered during configuration:

Timer type: TON, TOF, or TP
Timebase: 1 min, 1 s, 100 ms, 10 ms or 1 ms
Preset value (%TMi.P): 0 to 9999
Adjust: Checked or Not Checked

35011386 05/2009

488



Basic Instructions

Special Cases

The following table contains a list of special cases for programming the Timer

function block.

Special case

Description

Effect of a cold restart (%S0=1)

Forces the current value to 0. Sets output % TMi.Q
to 0. The preset value is reset to the value defined
during configuration.

Effect of a warm restart (%S1=1)

Has no effect on the current and preset values of
the timer. The current value does not change
during a power outage.

Effect of a controller stop

Stopping the controller does not freeze the current
value.

Effect of a program jump

Jumping over the timer block does not freeze the
timer. The timer will continue to increment until it
reaches the preset value (%TMi.P). At that point,
the Done bit (% TMi.Q) assigned to output Q of the
timer block changes state. However, the
associated output wired directly to the block
output is not activated and not scanned by the
controller.

Testing by bit %TMi.Q (done bit)

It is advisable to test bit %TMi.Q only once in the
program.

Effect of modifying the preset %TMi.P

Modifying the present value by using an
instruction or by adjusting the value only takes
effect on the next activation of the timer.

Timers with a 1 ms Time Base

The 1 ms time base is only available with the first six timers. The four system words
%SW76, %SW77, %SW78, and SW79, can be used as "hourglasses." These four
words are decremented individually by the system every millisecond if they have a

positive value.

Multiple timing can be achieved by successive loading of one of these words or by
testing the intermediate values. If the value of one of these four words is less than
0, it will not be modified. A timer can be "frozen" by setting the corresponding bit 15
to 1, and then "unfrozen" by resetting it to 0.

489

35011386 05/2009



Basic Instructi

ons

Programming Example

The following is an example of programming a timer function block.

LDR

LD
ST
LD
ST

%I10.1

[%6SW76:=XXXX]

%I0.2
%SWT6:X15
[%SW76=0]
%MO

(Launching the timer on the rising edge of %lI0.1)
(OO = required value)
(optional management of freeze, input 10.2 freezes)

(timer end test)

%I0.1

YoSW76:=3X XX

i

%l0.2

%SW76:X15

H |

gl

%SW76:=0

%eMO

I
=

o=

35011386 05/2009

490



Basic Instructions

Up/Down Counter Function Block (%Ci)

Introduction

The Counter function block (%Ci) provides up and down counting of events. These
two operations can be done simultaneously.

lllustration
The following is an illustration of the up/down Counter function block.
%Ci
J— E —
7 apiy B
o
_lew %C1.P 9999
— CD F—
Up/down counter function block
Parameters
The Counter function block has the following parameters:
Parameter Label Value
Counter number %Ci 0to 127
Current Value %Ci.V Word is incremented or decremented according to
inputs (or instructions) CU and CD. Can be read and
tested but not written by the program. Use the Data
Editor to modify %Ci.V.
Preset value %Ci.P 0 < %Ci.P <9999. Word can be read, tested, and
written (default value: 9999).
Edit using the ADJ ® Y: Yes, the preset value can be modified by using
Animation Tables the Animation Tables Editor.
Editor ® N: No, the preset value cannot be modified by using
the Animation Tables Editor.
Reset input (or R At state 1: %Ci.V = 0.
instruction)
491 35011386 05/2009




Basic Instructions

Operation

Parameter Label Value

Reset input (or S At state 1: %Ci.V = %Ci.P.

instruction)

Upcount input (or (6]V] Increments %Ci.V on a rising edge.

instruction)

Downcount input (or | CD Decrements %Ci.V on a rising edge.

instruction)

Downcount overflow | E (Empty) | The associated bit %Ci.E=1, when down counter

output %Ci.V changes from 0 to 9999 (set to 1 when %Ci.V
reaches 9999, and reset to 0 if the counter continues to
count down).

Preset output reached | D (Done) | The associated bit %Ci.D=1, when %Ci.V=%Ci.P.

Upcount overflow F (Full) The associated bit %Ci.F=1, when %Ci.V changes

output from 9999 to 0 (set to 1 when %Ci.V reaches 0, and
reset to O if the counter continues to count up).

The following table describes the main stages of up/down counter operation.

Operation Action Result
Counting A rising edge appears at the The %Ci.V current value is
upcounting input CU (or incremented by one unit.
instruction CU is activated).
The %Ci.V current value is equal | The "preset reached" output bit %Ci.D
to the %Ci.P preset value. switches to 1.
The %Ci.V current value The output bit %Ci.F (upcounting
changes from 9999 to 0. overflow) switches to 1.
If the counter continues to count | The output bit %Ci.F (upcounting
up. overflow) is reset to zero.
Downcount A rising edge appears at the The current value %Ci.V is

downcounting input CD (or
instruction CD is activated).

decremented by one unit.

The current value %Ci.V
changes from 0 to 9999.

The output bit %Ci.E (downcounting
overflow) switches to 1.

If the counter continues to count
down.

The output bit %Ci.F (downcounting
overflow) is reset to zero.

Up/down count

To use both the upcount and downcount functions simultaneously (or to
activate both instructions CD and CU), the two corresponding inputs CU
and CD must be controlled simultaneously. These two inputs are then
scanned in succession. If they are both at 1, the current value remains

unchanged.

35011386 05/2009

492




Basic Instructions

Special Cases

Operation Action Result
Reset Input R is set to state 1(or the R | The current value %Ci.V is forced to 0.
instruction is activated). Outputs %Ci.E, %Ci.D and %Ci.F are
at 0. The reset input has priority.
Preset If input S is setto 1 (or the S The current value %Ci.V takes the

instruction is activated) and the
reset input is at 0 (or the R
instruction is inactive).

%Ci.P value and the %Ci.D output is
setto 1.

The following table shows a list of special operating/configuration cases for

counters.

Special case

Description

Effect of a cold restart (%S0=1)

® The current value %Ci.V is set to 0.

® Output bits %Ci.E, %Ci.D, and %Ci.F are set to
0.

® The preset value is initialized with the value
defined during configuration.

Effect of a warm restart (%S1=1) of a
controller stop

Has no effect on the current value of the counter
(%Ci.V).

Effect of modifying the preset %Ci.P

Modifying the preset value via an instruction or by
adjusting it takes effect when the block is
processed by the application (activation of one of
the inputs).

493

35011386 05/2009




Basic Instructions

Programming and Configuring Counters

Introduction

Programming Example

The following illustration is a counter function block with examples of reversible and
non-reversible programming.

%lIl.1

}i

%ll1.2  %MO

T

R %8 E|

g

ADIY D -
o %CLP 9999
<D F—

%C8.D %60.0
\ {
| I8
Ladder diagram
BLK %C8 LD %I1.1
LD %I1.1 R %C8
R LD %I1.2
LD %I1.2 AND  %MO
AND  %MO CcU %C8
cu LD % C8.D
END BLK ST %Q0.0
LD %C8.D
ST 9%Q0.0

Reversible Programming

Non-Reversible programming

The following example is a counter that provides a count of up to 5000 items. Each
pulse on input %I1.2 (when internal bit %MO0 is set to 1) increments the counter %C8
up to its final preset value (bit %C8.D=1). The counter is reset by input %I1.1.

35011386 05/2009

494



Basic Instructions

Configuration
The following parameters must be entered during configuration:

e Preset value (%Ci.P): set to 5000 in this example
e Adjust: Yes

Example of an Up/Down Counter
The following illustration is an example of an Up/Down Counter function block.

%M %I10.0 SN0
—{ /H —r %l Epl———{R}

— 5 %oMO

D e

CU
%MO0  %I0.0

e e

Ladder diagram

In this example, if we take %C1.P 4, the current value of the %C1.V counter will be
incremented from 0 to 3, then decremented from 3 to 0. Whereas %I0.0=1 %C1.V
oscillates between 0 and 3.

495 35011386 05/2009



Basic Instructions

Shift Bit Register Function Block (%SBRi)

Introduction

The Shift Bit Register function block (%SBRi) provides a left or right shift of binary

data bits (0 or 1).

lllustration

The following is an example of a Shift Register function block.

Parameters

CU

CD

%SBRi

The Shift Bit Register function block has the following parameters.

Parameter Label Value

Register number %SBRi Oto7

Register bit %SBRi.j Bits 0 to 15 (j = 0 to 15) of the shift register can be
tested by a Test instruction and written using an
Assignment instruction.

Reset input (or R When function parameter R is 1, this sets register

instruction) bits 0 to 15 %SBRi.j to 0.

Shift to left input (or Cu On a rising edge, shifts a register bit to the left.

instruction)

Shift to right input (or | CD On a rising edge, shifts a register bit to the right.

instruction)

35011386 05/2009

496



Basic Instructions

Operation
The following illustration shows a bit pattern before and after a shift operation.

Operation

Initial state ‘1‘1‘0‘0‘0‘0‘0‘0‘1 1‘0‘1‘1‘1‘0‘0‘
B|t15 BltO

CU %SBRi perfon‘nsa//

shift to the left

Bit 15 is lost (1jofofofofojoft[1]of1]1]1]o]0]0]

Bit15 Bito

This is also true of a request to shift a bit to the right (Bit 15 to Bit 0) using the CD
instruction. Bit O is lost.

If a 16-bit register is not adequate, it is possible to use the program to cascade
several registers.

Programming

In the following example, a bit is shifted to the left every second while Bit 0 assumes
the opposite state to Bit 15.

Reversible
programming

%SBRO.15 %SBR0.0
/| / )7 LDN  %SBRO.15
| \ ST %SBRO.0
BLK  %SBRO
LD %S6
cu
%SERO END BLK

%36 Non-Reversible

4{ }7 cu programming

LDN  %SBRO.15

—CD ST %SBRO.0
LD %056
cu %SBRO

497 35011386 05/2009



Basic Instructions

Special Cases

The following table contains a list of special cases for programming the Shift Bit

Register function block.

Special Case

Description

Effect of a cold restart (%S0=1)

Sets all the bits of the register word to 0.

Effect of a warm restart (%S1=1)

Has no effect on the bits of the register word.

35011386 05/2009

498



Basic Instructions

Step Counter Function Block (%SCi)

Introduction

A Step Counter function block (%SCi) provides a series of steps to which actions
can be assigned. Moving from one step to another depends on external or internal
events. Each time a step is active, the associated bit (step counter bit %SCi.)) is set
to 1. The step counter can control output bits (%Qi.j), internal bits (%Mi) or AS
interface slave output bits (%QAXx.y.z). Only one step of a step counter can be active

at a time.
Illlustration
The following is an example of a Step Counter function block.
%S Ci
— R
— U
—CD
Parameters

The step function block has the following parameters:

Parameter Label Value
Step counter number | %SCi 0-7
Step Counter bit %SCi.j Step counter bits 0 to 255 (j = 0 to 255) can be

tested by a Load logical operation and written by
an Assignment instruction.

Reset input (or R When function parameter R is 1, this resets the
instruction) step counter.

Increment input (or Cu On arising edge, increments the step counter by
instruction) one step.

Decrement input (or | CD On a rising edge, decrements the step counter

instruction) by one step.

499 35011386 05/2009



Basic Instructions

Timing Diagram

Programming

The following timing diagram illustrates the operation of the step function block.

CU input ‘; ; ‘;

CD input ‘; ‘; ‘;

Active step ‘ 0 ‘ 1 ‘ 5 ‘ 3 ‘ 5 ‘ 1 ‘ 0 ‘
number

The following is an example of a Step Counter function block.

e Step Counter 0 is incremented by input %I10.2.
e Step Counter 0 is reset to 0 by input %I0.3 or when it arrives at step 3.
e Step 0 controls output %Q0.1, step 1 controls output %Q0.2, and step 2 controls

output %Q0.3.

35011386 05/2009

500



Basic Instructions

Special case

The following illustration shows both reversible and non-reversible programming for

this example.

%S8C0.3

H

%l0.3

%SC0

%l0.2

H ——

cu

2%SC0.0 2Q0.1
ul O
%5C0.1 %Q0.2
% \ ( )7
%SC0.2 2%Q0.3

H |

{

Reversible
programming

BLK 9%3C0
LD %SC0.3
OR %I0.3
R
LD %I0.2
cu
END BLK
LD %35C0.0
ST %Q0.1
LD 2%3C0.1
ST %Q0.2
LD 9%3C0.2
ST %Q0.3

Non-reversible
programming

LD  %SC03
OR  %I03
R %SC0
LD  %I0.2
CU  %SC0
LD  %SC0.0
ST %Q0.1
LD  %SC0.1
ST %Q0.2
LD  %SC0.2
ST %Q0.3

The following table contains a list of special cases for operating the Step Counter

function block.

Special case

Description

Effect of a cold restart (%S0=1) | Initializes the step counter.

Effect of a warm restart (%S1=1)

Has no effect on the step counter.

501

35011386 05/2009



Basic Instructions

17.3 Numerical Processing

Aim of this Section

This section provides an introduction to Numerical Processing including descriptions
and programming guidelines.

What's in this Section?
This section contains the following topics:

Topic Page
Introduction to Numerical Instructions 503
Assignment Instructions 504
Comparison Instructions 509
Arithmetic Instructions on Integers 511
Logic Instructions 514
Shift Instructions 516
Conversion Instructions 518
Single/Double Word Conversion Instructions 520

35011386 05/2009 502



Basic Instructions

Introduction to Numerical Instructions

At a Glance

Numerical instructions generally apply to 16-bit words (see Word Objects, page 27)
and to 32-bit double words (see page 30). They are written between square
brackets. If the result of the preceding logical operation was true (Boolean
accumulator = 1), the numerical instruction is executed. If the result of the preceding
logical operation was false (Boolean accumulator = 0), the numerical instruction is
not executed and the operand remains unchanged.

503 35011386 05/2009



Basic Instructions

Assignment Instructions

Introduction
Assignment instructions are used to load Operand Op2 into Operand Op1.

Assignment
Syntax for Assignment instructions.

[Op1:=0p2] <=>| Op2->Opi

Assignment operations can be performed on:
Bit strings

Words

Double words

Floating word

Word tables

Double word tables

Floating word tables

Assignment of Bit Strings

Operations can be performed on the following bit strings (see Structured Objects,
page 44):

e Bit string -> bit string (Example 1)

e Bit string -> word (Example 2) or double word (indexed)

e Word or double word (indexed) -> bit string (Example 3)

e Immediate value -> bit string

35011386 05/2009 504



Basic Instructions

Examples
Examples of bit string assignments.

%Q0:8:=%M64:8 D |
—| [26Q0:8:=%M54:8] (Ex. 1)
010.2 %MW100:=%l0:16 LD 0410.2
{ ‘7 - [46MW100:=%I0:16] (Ex. 2)
0410.3 %6M104:16:=%6K W0 LDR  %I03
4{ P }7 ] [%6M104:16:=%KW0] (Ex. 3)

Usage rules:

e For bit string -> word assignment: The bits in the string are transferred to the word
starting on the right (first bit in the string to bit 0 in the word), and the word bits
which are not involved in the transfer (length <16) are set to 0.

e For word -> bit string assignment: The word bits are transferred from the right
(word bit 0 to the first bit in the string).

Bit String Assignments
Syntax for bit string assignments.

Operator Syntax Operand 1 (Op1) Operand 2 (Op2)
= [Op1: = Op2] %MWi,%QWi, %QWCi | Immediate value,
%QWAI,%SWi %MWi, %KWi,
Operand 1 (Op1) takes | %MWi[%MWi], %MDi, | %IW,%IWAi, %IWCi
the value of Operand 2 | %MDi[%MWi] %INWi, %QWi, %QWAI
(Op2) %Mi:L, %Qi:L, %Si:L, %QWCi, %QNWi,
% Xi:L %SWi, %BLK.x,
%MWi[%MWi],
%KWi[%MWi],
%MDi[%MWi],
%KDi[%MWi],
%Mi:L,%Qi:L, %Si:L,
%Xi:L, %li:L

NOTE: The abbreviation %BLK.x (for example, %CO0.P) is used to describe any
function block word.

505 35011386 05/2009



Basic Instructions

Assignment of Words

Assignment operations can be performed on the following words and double words:
Word (indexed) -> word (2, for example) (indexed or not)

Double word (indexed) -> double word (indexed or not)

Immediate whole value -> word (Example 3) or double word (indexed or not)

Bit string -> word or double word

Floating point (indexed or not)-> floating point (indexed or not)

Word or double word -> bit string

Immediate floating point value -> floating point (indexed or not)

Examples
Examples of word assignments.
%SW112:=%MW100
LD 1
— [%6SW112:=%MW100] (Ex. 1)
%02  %MWO[eMW10]:=%KW0[%MW20] LD %10.2
4{ }i L] || [AMWO[%MW10]= (Ex. 2)
%K WO[%MW20]]
%I0.3 %MW10:=100
4{ P }7 L LDR  %I0.3 (Ex. 3)
[¢6MW10:=100]
Syntax

Syntax for word assignments.

Operator Syntax

= [Op1: =0p2]
Operand 1 (Op1) takes the value of Operand 2 (Op2)

35011386 05/2009 506



Basic Instructions

The following table gives details operands:

Type Operand 1 (Op1) Operand 2 (Op2)
word, %BLK.X, %MWi, %QWi, | Immediate value, %MWi,
double %QWAI, %QWCi, Y%KWi, %IW, %IWAI,
word, bit %SWi %MWIi[MWi], %IWCi, %QWi,
string %MDi, %MDi[%MWj], %QWAI,%QWCi, %SWi,
%Mi:L, %Qi:L, %Si:L, %MWI[MWi], %eKWi[MWi],
%Xi:L %MDi, %MDi[%MW]],
%KDi, %KDi[MW]] %INW,
%Mi:L, %Qi:L, %QNW,
%Si:L, %Xi:L, %li:L
Floating %MFi, %MFi[%MWij] Immediate floating point
point value, %MFi,
%MFi[%MW;j], %KFi,
% KFi[%MWij]

NOTE: The abbreviation %BLK.x (for example, R3.1) is used to describe any
function block word. For bit strings %Mi:L, %Si:L, and %Xi:L, the base address of
the first of the bit string must be a multiple of 8 (0, 8, 16, ..., 96, ...).

Assignment of Word, Double Word and Floating Point Tables

Assignment operations can be performed on the following object tables (see Tables
of words, page 45):

Immediate whole value -> word table (Example 1) or double word table
Word -> word table (Example 2)

Word table -> word table (Example 3)

Table length (L) should be the same for both tables.
Double word -> double word table

Double word table -> double word table

Table length (L) should be the same for both tables.
Immediate floating point value -> floating point table
Floating point -> floating point table

Floating point table-> floating point table

Table length (L) should be the same for both tables.

507

35011386 05/2009



Basic Instructions

Examples

Syntax

Examples of word table assignments:

%MW0:10:=100

%I0.2

YoMW0:10:=%MW11

-

%I0.3

%MW 10:20:=2%KW30:20

Hirh-

LD 1
[%MW0:10:=100] (Ex. 1)
LD %02
[%MWO0:10:=%MW11] (Ex. 2)
LDR  %I0.3
[%MW10:20:=%KW30:20]  (Ex. 3)

Syntax for word, double word and floating point table assignments

Operator

Syntax

[Op1: = Op2]

Operand 1 (Op1) takes the value of Operand 2 (Op2)

The following table gives details operands:

tables

Type Operand 1 (Op1) Operand 2 (Op2)

word table %MWi:L, %SWi:L %MWi:L, %SWi:L, Immediate whole
value, %MWi, %KWi, %IW, %QW,
%IWA, %QWA, %SWi, %BLK.x

Double word %MDi:L Immediate whole value, %MDi,

tables %KDi,%MDi:L, %KDi:L

Floating word %MFi:L Immediate floating point value, %MFi,

% KFi, %MFi:L, %KFi:L

NOTE: The abbreviation %BLK.x (for example, R3.1) is used to describe any
function block word.

35011386 05/2009

508



Basic Instructions

Comparison Instructions

Introduction

Structure

Comparison instructions are used to compare two operands.

The following table lists the types of Comparison instructions.

Instruction

Function

Test if operand 1 is greater than operand 2

Test if operand 1 is greater than or equal to operand 2

Test if operand 1 is less than operand 2

Test if operand 1 is less than or equal to operand 2

Test if operand 1 is equal than operand 2

Test if operand 1 is different from operand 2

The comparison is executed inside square brackets following instructions LD, AND,
and OR. The result is 1 when the comparison requested is true.

Examples of Comparison instructions.

%MW 10100 %Q0-3
St T
%MO QoMW 20=%KW35 %0.2 .D
AND
% }7 = 4( )7 ST
%10.2 %Q0.4 LD
| / OR
4{ \ \ ) ST
Y%MF30>=%MF40
<

[%6MW10 = 100]
%Q0.3

%MO0
[%MW20 < %KW35]
%Q0.2

%I10.2
[26MF30>=0MF40]
%Q0.4

509

35011386 05/2009



Basic Instructions

Syntax

Syntax for Comparison instructions:

Operator Syntax
>, >=, <, <=, =, <> LD [Op1 Operator Op2]
AND [Op1 Operator Op2]
OR [Op1 Operator Op2]
Operands:
Type Operand 1 (Op1) Operand 2 (Op2)
Words %MWi, %KWi, %INWI, %IW, Immediate value, %MWi,

%IWAI, %IWCi, %QNWi,
%QWi, %QWAI, %QWCi,
%QNWi, %SWi, %BLK.x

%KWi, %INWI, %IW, %IWAI,
%IWCi, %QNWi, %QW,
%QWAI, %QWCi, %SWi,
%BLK.x, %MWi [%MWil,
%KWi [%MWi]

Double words

%MDi, %KDi

Immediate value, %MDi,
%KDi, %MDi [%MWi], %KD
[%eMWI]

Floating point words

%MFi, %KFi

Immediate floating point value,
%MFi, %KFi, %MFi [%MWi],
%KFi [%oMWi]

NOTE: Comparison instructions can be used within parentheses.

An example of using Comparison instruction within parentheses:

LD %M0
AND¢

OR %I0.0
)

ST %00.1

[%MF20 > 10.0]

35011386 05/2009

510



Basic Instructions

Arithmetic Instructions on Integers

Introduction

Arithmetic instructions are used to perform arithmetic operations between two
integer operands or on one integer operand.

The following table lists the types of Arithmetic instructions.

Instruction

Function

+

Add two operands

Subtract two operands

*

Multiply two operands

/

Divide two operands

REM Remainder of division of the two operands
SQRT Square root of an operand
INC Increment an operand
DEC Decrement an operand
ABS Absolute value of an operand
Structure
Arithmetic operations are performed as follows:
0,MO %MW 0:=2%MW10+100 LD %MO
{ % - [%MWO:=%MW10 + 100]
0510.2 %MW =SQRT(%MWI10) LD 0510.2
% P L] [%MW0:=SQRT(%MW10)]
%I0.3 INC %eMW100 LDR  %I03
4{ P }7 || [INC %MW 100]
Syntax
The syntax depends on the operators used as shown in the table below.
Operator Syntax
+,-,*,/,REM [Op1: = Op 2 Operator Op3]
INC, DEC [Operator Op1]
511 35011386 05/2009



Basic Instructions

Operator

Syntax

SQRT (1)

[Op1: = SQRT(0Op2)]

ABS (1)

[Op1: = ABS(Op2)]

Operands:

Type

Operand 1 (Op1)

Operands 2 and 3
(Op2 & 3) (1)

Words

%MWi, %QWi,
%QWAI, %QWCi,

Immediate value,
%MWi, %KWi, %INW,

Y%SWi %IW, %IWAI, %IWCi,
%QNW, %QW,
%QWAI, %QWCi,
%SWi, %BLK.x
Double words %MDi Immediate value,

%MDi, %KDi

NOTE: (1) With this operator, Op2 cannot be an immediate value.

The ABS function can only be used with double words (%MD and %KD) and floating
points (%MF and %KF). Consequently, OP1 and OP2 must be double words or

floating points.

Overflow and Error Conditions
Addition

e Overflow during word operation
If the result exceeds the capacity of the result word, bit %S18 (overflow) is set to
1 and the result is not significant (see Example 1, next page). The user program
manages bit %S18.

Note:

For double words, the limits are -2147483648 and 2147483647.

Multiplication

e Overflow during operation
If the result exceeds the capacity of the result word, bit %S18 (overflow) is set to
1 and the result is not significant.

Division / remainder

e Division by 0

If the divider is 0, the division is impossible and system bit %S18 is setto 1. The
result is then incorrect.

e Overflow during operation
If the division quotient exceeds the capacity of the result word, bit %S18 is set to

1.

35011386 05/2009

512



Basic Instructions

Square root extraction

e Overflow during operation
Square root extraction is only performed on positive values. Thus, the result is
always positive. If the square root operand is negative, system bit %S18 is set to
1 and the result is incorrect.

NOTE: The user program is responsible for managing system bits %S17 and %S18.
These are set to 1 by the controller and must be reset by the program so that they
can be reused (see previous page for example).

Examples
Example 1: overflow during addition.

%oMO SoMW0:=2oMW 1 +%MW?2

LD %MO

ﬁ % ] [%6MWO=%MW1 + %MW2]
%518 %MW10:=%MW0
LDN  %S$18
ﬂ ! % ] [%6MW10:=%MW0]
%MW10:=32767
%318 ° LD %SI8

%8518

% - [2%6MW10:=32767]
R %518
[
(R}

If %MW1 =23241 and %MW2=21853, the real result (45094) cannot be expressed
in one 16-bit word, bit %S18 is set to 1 and the result obtained (-20442) is incorrect.
In this example when the result is greater than 32767, its value is fixed at 32767.

513 35011386 05/2009



Basic Instructions

Logic Instructions

Introduction

The Logic instructions are used to perform a logical operation between two word
operands or on one word operand.

The following table lists the types of Logic instructions.

Instruction

Function

AND

AND (bit-wise) between two operands

OR

Logic OR (bit-wise) between two operands

XOR

Exclusive OR (bit-wise) between two operands

NOT

Logic complement (bit-wise) of an operand

Structure

Logic operations are performed as follows:

%M0O

%MWO0:=2%MWI10 AND 16#FF00

H H

[2oMW0:=%KW5 OR %MWI10]

%I0.3

%MW102=NOT (%MWI100)

H H

LD % MO
[9eMW0:=2%MW10 AND 16#FF00]

LD 1
[¢%MW0:=%KW35 OR %MW10]

LD  %I03
[2%MW102:=NOT(%MW100)]

35011386 05/2009

514



Basic Instructions

The syntax depends on the operators used:

Syntax

Operand 1 (Op1)

Operands 2 and 3
(Op2 & 3)

[Op1: = Op2 Operator Op3]

[Op1:=NOT(Op2)]

%MWi, %QWi,
%QWAI, %QWCi,
%SWi

Immediate value (1),
%MWi, %KWi, %IW,
%IWAI, %IWCi,
%QW, %QWAI,
%QWCi, %SWi,
%BLK.x

NOTE: (1) With NOT, Op2 cannot be an immediate value.

Syntax
Operator
AND, OR, XOR
NOT
Example

The following is an example of a logical AND instruction:

[$MW15:=%MW32 AND SMW12]

515

35011386 05/2009




Basic Instructi

ons

Shift Instructions

Introduction

Shift instructions move bits of an operand a certain number of positions to the right

or to the left.

The following table lists the types of Shift instructions.

Instruction | Function
Logic shift
SHL(op2,i) Logic shift of i positions to ‘ F 0
the left ~— LTI e
%817
SHR(op2,i) | Logic shift of i positions to F 0
the right. — [
%817
Rotate shift
ROL(op2,i) Rotate shift of i positions [
to the left.
F 0
e RERRRNERERENEEEE
%s17
ROR(op2,i) Rotate shift of i positions
to the right. F 0
— LTI
%817

NOTE: System bit %S17 (see page 719) is used to indicate the last ejected bit.

35011386 05/2009

516



Basic Instructions

Structure
Shift operations are performed as follows:
%10.1
P %MWO:=SHL(%MW10, 3 LDR  %I0.1
% F oMWO:=SHL{% S [%6MWO0 :=SHL(%MW10, 5)]
%102 LDR  %I0.2
A P}— %MW10:=ROR(%KWO, 8) || | | [%6MW10 :=ROR(%KW9, 8)]
Syntax
The syntax depends on the operators used as shown in the table below.
Operator Syntax
SHL, SHR [Op1: = Operator (Op2,i)]
ROL, ROR
Operands:
Types Operand 1 (Op1) |Operand 2 (Op2)
Words %MWi, %QWi, Y% MWi, %KWi, %IW,
%QWAI, %QWCi, | %IWAI, %IWCi,
%SWi %QW, %QWAI,
%QWCi, %SWi,
%BLK.x
Double word %MDi %MDi, %KDi
517 35011386 05/2009



Basic Instructions

Conversion Instructions

Introduction

Conversion instructions perform conversion between different representations of
numbers.

The following table lists the types of Conversion instructions.

Instruction Function

BTI BCD --> Binary conversion

ITB Binary --> BCD conversion

Review of BCD Code

Binary Coded Decimal (BCD) represents a decimal digit (0 to 9) by coding four
binary bits. A 16-bit word object can thus contain a number expressed in four digits
(0000 - 9999), and a 32 bit double word object can therefore contain an eight-figure
number.

During conversion, system bit %S18 is set to 1 if the value is not BCD. This bit must
be tested and reset to 0 by the program.

BCD representation of decimal numbers:

Decimal 0 1 2 3 4 5 6 7 8 9
BCD 0000 |0001 |0010 |0011 |0100 |0O101 |0110 |0111 |1000 | 1001

Examples:

e Word %MWS5 expresses the BCD value "2450" which corresponds to the binary
value: 0010 0100 0101 0000

e Word %MW12 expresses the decimal value "2450" which corresponds to the
binary value: 0000 1001 1001 0010

Word %MWS5 is converted to word %MW12 by using instruction BTI.
Word %MW12 is converted to word %MWS5 by using instruction ITB.

35011386 05/2009 518



Basic Instructions

Structure
Conversion operations are performed as follows:
%MO %MW 0:=BTI{%MW10)
LD %MO
_< }_ ] [¢6MWO =BTI(%MW 10)]
°%410.2 %MW 10:=ITB(%KW9) LD %I02
% P - [26MW 10 =ITB(%KW9)]
Syntax
The syntax depends on the operators used as shown in the table below.
Operator Syntax
BTI, ITB [Op1: = Operator (Op2)]
Operands:
Type Operand 1 (Op1) |Operand 2 (Op2)
Words %MWi, %QWi, Y% MWi, %KWi, %IW,
%QWAI, %QWCi, | %IWAI, %IWCi,
%SWi %QW, %QWAI,
%QWCi, %SWi,
%BLK.x
Double words %MDi %MDi, %KDi

Application Example:

The BTl instruction is used to process a setpoint value at controller inputs via BCD
encoded thumb wheels.

The ITB instruction is used to display numerical values (for example, the result of a
calculation, the current value of a function block) on BCD coded displays.

519 35011386 05/2009



Basic Instructions

Single/Double Word Conversion Instructions

Introduction

The following table describes instructions used to perform conversions between
single and double words:

Instruction Function

Lw LSB of double word extracted to a word.

HW MSB of double word extracted to a word.
CONCATW Concatenates two words into a double word.
DWORD Converts a 16 bit word into a 32 bit double word.

Structure
Conversion operations are performed as follows:

%M %MWO:=HW{%MD10)

#% JdILD MO

[%MWO0 =HW(%MD10)]

0102 %MDI0=DWORD(%KWY)

LD %I0.2
4{ }‘ I [%MD10 =DWORD(%KW9)]

%l0.3 %MD11:=CONCATW{%MWI10, %MW5)

#% lLp o103
[%6MD11=CONCATW(%MW10,%MW5)]

35011386 05/2009 520



Basic Instructions

Syntax

The syntax depends on the operators used as shown in the following table: |

Operator Syntax Operand 1 Operand 2 Operand 3
(Op1) (Op2) (Op3)
LW, HW Op1 = Operator (Op2) Y%oMWi %MDi, %KDi |[-]
CONCATW | Op1 = Operator (Op2, Op3)) %MDi %MWi, %6MWi,
%KWi, %KWi,
immediate immediate
value value
DWORD Op1 = Operator (Op2) %MDi %MWi, [-]
%oKWi

521

35011386 05/2009




Basic Instructions

17.4 Program Instructions

Aim of this Section
This section provides an introduction to Program Instructions.

What's in this Section?
This section contains the following topics:

Topic Page
END Instructions 523
NOP Instruction 525
Jump Instructions 526
Subroutine Instructions 528

35011386 05/2009 522



Basic Instructions

END Instructions

Introduction

The End instructions define the end of the execution of a program scan.

END, ENDC, and ENDCN

Three different end instructions are available:
e END: unconditional end of program

e ENDC: end of program if Boolean result of preceding test instruction is 1

o ENDCN: end of program if Boolean result of preceding test instruction is 0

By default (normal mode) when the end of program is activated, the outputs are
updated and the next scan is started.

If scanning is periodic, when the end of period is reached the outputs are updated

and the next scan is started.

Examples
Example of an unconditional END instruction.
YoM 1 %Q0.1 LD %M1
| ( ST %Q0.1
4‘ | ) >7 LD %M2
ST %Q0.2
YaM2 %02
END } END
523 35011386 05/2009



Basic Instructions

Example of a conditional END instruction.

%M1 %Q0.1 LD %M
— | (|| st %Qo1
LD %M2
ST %Q0.2
%M?2 %002
4{ \ /
| \
%el0.2 LD  %I0.2
ﬂ \ END } ENDC If %I10.2 = 1, end of
‘ LD 0452 program Scanning
ST %Q0.2
%M?2 9%0Q0.2 .
N | 0? If %10.2 = 0, continues
4{ \ \ program scanning
................... until new END instruc-
777777777777777777 tion
END } END

35011386 05/2009 524



Basic Instructions

NOP Instruction

NOP

The NOP instruction does not perform any operation. Use it to "reserve" lines in a
program so that you can insert instructions later without modifying the line numbers.

525 35011386 05/2009



Basic Instructions

Jump Instructions

Introduction

Jump instructions cause the execution of a program to be interrupted immediately
and to be continued from the line after the program line containing label %Li (i =0 to
15 for module without I/O expansion TWDLCxx10DRF/TWDLCxx16DRF and 0 to 63

for the others).

JMP, JMPC and JMPCN

Three different Jump instructions are available:
e JMP: unconditional program jump

e JMPC: program jump if Boolean result of preceding logic is 1
e JMPCN: program jump if Boolean result of preceding logic is 0

Examples
Examples of jump instructions.

000 LD %M15
001 JMPC  %L8

002 LD [%MW24>%MW12]
003 ST %M15

004 JMP  %L12

005 %LS8: e
006 LD %M12

007 AND  %MI3

008 ST %M12

009 JMPCN %L12

010 OR 9%M11

0118 %Q0.0

012 %L12: -
013LD 9%I0.0

Jump to label %L8 if %M15
is at 1

Unconditional jump to label
%L12:

Jump to label %L12 if
%M12is at0

35011386 05/2009

526



Basic Instructions

Guidelines

e Jump instructions are not permitted between parentheses, and must not be
placed between the instructions AND(, OR(and a close parenthesis instruction
e,

e The label can only be placed before a LD, LDN, LDR, LDF or BLK instruction.

e The label number of label %Li must be defined only once in a program.

e The program jump is performed to a line of programming which is downstream or
upstream. When the jump is upstream, attention must be paid to the program
scan time. Extended scan time can cause triggering of the watchdog.

527 35011386 05/2009



Basic Instructions

Subroutine Instructions

Introduction

The Subroutine instructions cause a program to perform a subroutine and then
return to the main program.

SRn, SRn: and RET.

The subroutines consist of three steps:

e The SRn instruction calls the subroutine referenced by label SRn, if the result of
the preceding Boolean instruction is 1.

e The subroutine is referenced by a label SRn:, with n =0 to 15 for
TWDLCAA10DRF, TWDLCAA16DRF and 0 to 63 for all other controllers.

e The RET instruction placed at the end of the subroutine returns program flow to
the main program.

Example

Examples of subroutine instructions.

000
001
002
003
004
005
006
007
008
009

010 F

011
012
013
014
015
010

LD
AND
ST
LD
SR8

%M15

%MS5

%Q0.0
[%6MW24=9MW12]

%I0.4 -—

MI13

%TMO
%TMO0.Q
%M15

Jump to subroutine SR8

Return to main subroutine

35011386 05/2009

528



Basic Instructions

Guidelines

e A subroutine should not call up another subroutine.

e Subroutine instructions are not permitted between parentheses, and must not be
placed between the instructions AND(, OR( and a close parenthesis instruction
",

e The label can only be placed before a LD or BLK instruction marking the start of
a Boolean equation (or rung).

e (Calling the subroutine should not be followed by an assignment instruction. This
is because the subroutine may change the content of the boolean accumulator.
Therefore upon return, it could have a different value than before the call. See the
following example.

Example of programming a subroutine.

%10.0
| / 8 0.0
=>%3R0

%Q0.0 LD  %I0.0

—{ ST %Q0.0

SRO

529

35011386 05/2009



Advanced Instructions

18

Subject of this Chapter

This chapter provides details about instructions and function blocks that are used to

create advanced control programs for Twido programmable controllers.

What's in this Chapter?

This chapter contains the following sections:

Section Topic Page
18.1 Advanced Function Blocks 531
18.2 Clock Functions 579
18.3 Twido PID Quick Start Guide 590
18.4 PID Function 614
18.5 Floating point instructions 676
18.6 ASCI! instructions 688
18.7 Instructions on Object Tables 699

35011386 05/2009

530




Advanced Instructions

18.1

Advanced Function Blocks

Aim of this Section

This section provides an introduction to advanced function blocks including

programming examples.

What's in this Section?

This section contains the following topics:

Topic Page
Bit and Word Objects Associated with Advanced Function Blocks 532
Programming Principles for Advanced Function Blocks 534
LIFO/FIFO Register Function Block (%Ri) 536
LIFO Operation 538
FIFO Operation 539
Programming and Configuring Registers 540
Pulse Width Modulation Function Block (%PWM) 543
Pulse Generator Output Function Block (%PLS) 547
Drum Controller Function Block (%DR) 550
Drum Controller Function Block %DRi Operation 552
Programming and Configuring Drum Controllers 554
Fast Counter Function Block (%FC) 556
Very Fast Counter Function Block (%VFC) 559
Transmitting/Receiving Messages - the Exchange Instruction (EXCH) 574
Exchange Control Function Block (%MSGx) 575

531

35011386 05/2009




Advanced Instructions

Bit and Word Objects Associated with Advanced Function Blocks

Introduction

Advanced function blocks use similar types of dedicated words and bits as the
standard function blocks. Advanced function blocks include:

LIFO/FIFO registers (%R)

Drum controllers (%DR)

Fast counters (%FC)

Very fast counters (%VFC)

Pulse width modulation output (%PWM)
Pulse generator output (%PLS)

Shift Bit Register (%SBR)

Step counter (%SC)

Message control block (%MSG)

Objects Accessible by the Program

The table below contains an overview of the words and bits accessible by the
program that are associated with the various advanced function blocks. Please note
that write access in the table below depends on the "Adjustable" setting selected
during configuration. Setting this allows or denies access to the words or bits by
TwidoSuite or the operator interface.

Advanced Associated Words and Bits Address Write
Function Block Access
%R Word Register input %Ri.l Yes
Word Register output %Ri.0 Yes
Bit Register output full %Ri.F No
Bit Register output empty %Ri.E No
%DR Word Current step number %DRi.S Yes
Bit Last step equals current step %DRIi.F No
%FC Word Current Value %FCi.V Yes
Word Preset value %FCi.P Yes
Bit Done %FCi.D No

35011386 05/2009 532



Advanced Instructions

Advanced Associated Words and Bits Address Write
Function Block Access
%VFC Word Current Value %VFCi.V No
Word Preset value %VFCi.P Yes
Bit Counting direction %VFCi.U No
Word Capture Value %VFCi.C No
Word | Threshold 0 Value %VFCi.S0 Yes
Word Threshold Value1 %VFCi.S1 Yes
Bit Overflow %VFCi.F No
Bit Reflex Output 0 Enable %VFCi.R Yes
Bit Reflex Output 1 Enable %VFCi.S Yes
Bit Threshold Output 0 %VFCi.THO |No
Bit Threshold Output 1 %VFCi.TH1 | No
Bit Frequency Measure Time Base | %VFCi.T Yes
%PWM Word Percentage of pulse at 1 in %PWMi.R Yes
relationship to the total period.
Word Preset period %PWMi.P Yes
%PLS Word Number of pulses %PLSi.N Yes
Word Preset value %PLSi.P Yes
Bit Current output enabled %PLSi.Q No
Bit Generation done %PLSi.D No
%SBR Bit Register Bit %SBRi.J No
%SC Bit Step counter Bit %SCi.j Yes
%MSG Bit Done %MSGi.D No
Bit Error %MSGi.E No

533

35011386 05/2009



Advanced Instructions

Programming Principles for Advanced Function Blocks

At a Glance

All Twido applications are stored in the form of List programs, even if written in the
Ladder Editor, and therefore, Twido controllers can be called List "machines." The
term "reversibility" refers to the ability of TwidoSuite to represent a List application
as Ladder and then back again. By default, all Ladder programs are reversible.

As with basic function blocks, advanced function blocks must also take into
consideration reversibility rules. The structure of reversible function blocks in List
language requires the use of the following instructions:

e BLK: Marks the block start and the input portion of the function block

e OUT_BLK: Marks the beginning of the output portion of the function block

e END _BLK: Marks the end of the function block

NOTE: The use of these reversible function block instructions is not mandatory for
a properly functioning List program. For some instructions it is possible to program
in List language without being reversible.

Dedicated Inputs and Outputs

The Fast Counter, Very Fast Counter, PLS, and PWM advanced functions use
dedicated inputs and outputs, but these bits are not reserved for exclusive use by
any single block. Rather, the use of these dedicated resources must be managed.

When using these advanced functions, you must manage how the dedicated inputs
and outputs are allocated. TwidoSuite assists in configuring these resources by
displaying input/output configuration details and notifying if a dedicated input or
output is already used by a configured function block.

The following tables summarizes the dependencies of dedicated inputs and outputs
and specific functions.

When used with counting functions:

Inputs | Use

%I0.0.0 | %VFCO: Up/Down management or Phase B
%I10.0.1 | %VFCO: Pulse input or Phase A

%I10.0.2 | %FCO0: Pulse input or %VFCO pre-set input

%I0.0.3 | %FC1: Pulse input or %VFCO capture input
%I10.0.4 | %FC2: Pulse input or %VFC1 capture input
%I10.0.5 | %VFC1 pre-set input

%I0.0.6 | %VFC1: Up/Down management or Phase B
%I10.0.7 | %VFC1: Pulse input or Phase A

35011386 05/2009

534



Advanced Instructions

When used with counting or special functions:

Outputs | Use

%Q0.0.0 | %PLS0 or PWMO output
%Q0.0.1 %PLS1 or PWM1 output
%Q0.0.2 | Reflex outputs for %VFCO
%Q0.0.3
%Q0.0.4 | Reflex outputs for %VFC1
%Q0.0.5

Using Dedicated Inputs and Outputs

TwidoSuite enforces the following rules for using dedicated inputs and outputs.
e Each function block that uses dedicated I/0O must be configured and then

referenced in the application. The dedicated I/O is only allocated when a function

block is configured and not when it is referenced in a program.

e After a function block is configured, its dedicated input and output cannot be used

by the application or by another function block.

For example, if you configure %PLS0, you can not use %Q0.0.0 in %DRO0 (drum

controller) or in the application logic (that is, ST %Q0.0.0).

e |f a dedicated input or output is needed by a function block that is already in use

by the application or another function block, this function block cannot be
configured.

For example, if you configure %FCO as an up counter, you can not configure
%VFCO to use %I10.0.2 as capture input.

NOTE: To change the use of dedicated I/O, unconfigure the function block by setting
the type of the object to "not used," and then remove references to the function block

in your application.

535

35011386 05/2009



Advanced Instructions

LIFO/FIFO Register Function Block (%Ri)

Introduction

lllustration

A register is a memory block which can store up to 16 words of 16 bits each in two
different ways:

e Queue (First In, First Out) known as FIFO.
e Stack (Last In, First Out) know as LIFO.

The following is an illustration of the register function block.

%Ri
R E ——
I F—
TYPE FIFO
— 0

Reqgister function block

35011386 05/2009

536



Advanced Instructions

Parameters

The Counter function block has the following parameters:

Parameter Label Value
Register number %Ri 0to 3.
Type FIFO or Queue or Stack.

LIFO
Input word %Ri.| Register input word. Can be read, tested, and written.
Output word %Ri.0 Register output word. Can be read, tested and written.
Storage Input (or I (In) On a rising edge, stores the contents of word %Ri.l in
instruction) the register.
Retrieval Input (or O (Out) On a rising edge, loads a data word of the register into
instruction) word %Ri.O.
Reset input (or R (Reset) | At state 1, initializes the register.
instruction)
Empty Output E (Empty) | The associated bit %Ri.E indicates that the register is

empty. Can be tested.

Full Output F (Full) The associated bit %Ri.F indicates that the register is

full. Can be tested.

537

35011386 05/2009




Advanced Instructions

LIFO Operation

Introduction

In LIFO operation (Last In, First Out), the last data item entered is the first to be

retrieved.

Operation

The following table describes LIFO operation.

Step

Description

Example

1

When a storage request is
received (rising edge at input |
or activation of instruction 1), the
contents of input word %Ri.l
(which has already been
loaded) are stored at the top of
the stack (Fig. a). When the
stack is full (output F=1), no
further storage is possible.

Storage of the contents of %Ri.l
at the top of the stack.

80

50

When a retrieval request is
received (rising edge at input
O or activation of instruction O),
the highest data word (last word
to be entered) is loaded into
word %Ri.0 (Fig. b). When the
register is empty (output E=1)
no further retrieval is possible.
Output word %Ri.O does not
change and retains its value.

The stack can be reset at any
time (state 1 at input R or
activation of instruction R). The
elementindicated by the pointer
is then the highest in the stack.

Retrieval of the data word high-
est in the stack.

%Ri.0
50
80
50

35011386 05/2009

538



Advanced Instructions

FIFO Operation

Introduction

Operation

In FIFO operation (First In, First Out), the first data item entered is the first to be

retrieved.

The following table describes FIFO operation.

Step

Description

Example

1

When a storage request is received
(rising edge at input | or activation of
instruction ), the contents of input word
%Ri.l (which has already been loaded)
are stored at the top of the queue (Fig.
a). When the queue is full (output F=1),
no further storage is possible.

Storage of the contents of %Ri.l
at the top of the queue.

80

50

When a retrieval request is received
(rising edge at input O or activation of
instruction O), the data word lowest in
the queue is loaded into output word
%Ri.0 and the contents of the register
are moved down one place in the
queue (Fig. b).

When the register is empty (output
E=1) no further retrieval is possible.
Output word %Ri.O does not change
and retains its value.

The queue can be reset at any time
(state 1 at input R or activation of
instruction R).

Retrieval of the first data item
which is then loaded into %Ri.O.

(b)
%Ri.O

20
80

20
80

539

35011386 05/2009




Advanced Instructions

Programming and Configuring Registers

Introduction

The following programming example shows the content of a memory word
(%MW34) being loaded into a register (%R2.1) on reception of a storage request
(%10.2), if register %R2 is not full (%R2.F = 0). The storage request in the register
is made by %M1. The retrieval request is made by input %10.3, and %R2.0 is loaded
into %MW?20, if the register is not empty (%R2.E = 0).

35011386 05/2009

540



Advanced Instructions

Programming Example

The following illustration is a register function block with examples of reversible and
non-reversible programming.

%oM1

#

%l0.3  %RZE

i

R %R2

I
TYPE FIFO

e}

E

F

%l0.3

Y%eMW20:=%R2.0

M

%l02 %R2F

%R2.I:=%MW34

Rt

li
}_

%M1

(-

Ladder diagram

BLK %R2
LD %M1

1

LD %I0.3
ANDN %R2.E
0

END BLK

LD %I0.3
[%6MW20:=%R2.0]
LD %I0.2
ANDN %R2.F
[%0R2.1:=%MW34]
ST %M1

LD %M1

I %R2
LD %I0.3
ANDN %R2.E
o} %R2
[%6MW20:=%R2.0]

LD %I0.2
ANDN %R2.F
[%R2.I=%MW34]

ST %M1

Reversible program

Non-reversible program

541

35011386 05/2009



Advanced Instructions

Configuration
The only parameter that must be entered during configuration is the type of register:

e FIFO (default), or
e LIFO

Special Cases

The following table contains a list of special cases for programming the Shift Bit
Register function block:

Special case Description

Effect of a cold restart (%S0=1) Initializes the contents of the register. The output
bit %Ri.E associated with the output E is set to 1.

Effect of a warm restart (%S1=1) of a Has no effect on the current value of the register,
controller stop nor on the state of its output bits.

35011386 05/2009 542



Advanced Instructions

Pulse Width Modulation Function Block (%sPWM)

Introduction

The Pulse Width Modulation (%PWM) function block generates a square wave
signal on dedicated output channels %Q0.0.0 or %Q0.0.1, with variable width and,
consequently, duty cycle. Controllers with relay outputs for these two channels do
not support this function due to a frequency limitation.

There are two %PWM blocks available. %PWMO uses dedicated output %Q0.0.0
and %PMW1 uses dedicated output %Q0.0.1. The %PLS function blocks contend
to use these same dedicated outputs so you must choose between the two
functions.

lllustration
PWM block and timing diagram:

%P WMO ‘ ‘ ‘ ‘
— 1IN 1 T |
rﬂ—pl | programmable width
Tp
B | |
%PWMi.P
’ ! | | configurable
ot = fixed period
T

543 35011386 05/2009



Advanced Instructions

Parameters
The following table lists parameters for the PWM function block.

Parameter Label Description

Timebase B 0.142 ms, 0.57 ms, 10 ms, 1 s (default value)
Preselection of | %PWMi.P 0 < %PWMi.P <= 32767 with time base 10 msor 1 s
the period 0 < %PWMi.P <= 255 with time base 0.57 ms or 0.142 s

0 = Function not in use

Duty cycle %PWMi.R This value gives the percentage of the signal in state 1 in
a period. The width Tp is thus equal to:

Tp =T * (%PWMIi.R/100). The user application writes the
value for %PWM.i.R. It is this word which controls the duty
cycle of the period. For T definition, see "range of periods"
below.

The default value is 0 and values greater than 100 are
considered to be equal to 100.

Pulse IN At state 1, the pulse width modulation signal is generated
generation input at the output channel. At state 0, the output channel is set
to 0.

Range of Periods

The preset value and the time base can be modified during configuration. They are
used to fix the signal period T=%PWM.i.P * TB. The lower the ratios to be obtained,
the greater the selected %PWMi.P must be. The range of periods available:

e 0.142 ms to 36.5 ms in steps of 0.142 ms (27.4Hz to 7kHz)

o 0.57 msto 146 ms in steps of 0.57 ms (6./84 Hz to 1.75 kHz)

e 10 ms to 5.45 mins in steps of 10 ms

e 1 secto 9.1 hours in steps of 1 sec

For fast time-base (0.147 ms & 0.142 ms), all values are working.For 10ms and 1s
time-base, preset value determine the number of "step" between 0 and 100%. For
instance :

%PWMO.P = 2 => available ratio are 0%, 50%, 100%

%PWMO.P = 5 => available ratio are 0%, 20%, 40%, 60%, 80%, 100%
%PWMO.P = 10 => ratios are 0-10-20-30-40-50-60-70-80-90-100 %

NOTE: The PWM function block does not work if the preset value is equal to1.

35011386 05/2009 544



Advanced Instructions

Operation

The frequency of the output signal is set during configuration by selecting the time
base TB and the preset %PWMi.P. Modifying the % PWMi.R duty cycle in the
program modulates the width of the signal. Below is an illustration of a pulse diagram
for the PWM function block with varying duty cycles.

Input IN —I I—

80% |
s0% L
Ratio 20% |

Dedicated oupt  —— L FLELFLALFFFA

Programming and Configuration

In this example, the signal width is modified by the program according to the state
of controller inputs %10.0.0 and %I10.0.1.

If %10.0.1 and %I0.0.2 are set to 0, the %PWMO.R ratio is set at 20%, the duration
of the signal at state 1 is then: 20 % x 500 ms = 100 ms.

If %10.0.0 is set to 0 and %I0.0.1 is set to 1, the %PWMO.R ratio is set at 50%
(duration 250 ms).

If %10.0.0 and %I0.0.1 are set to 1, the %PWMO.R ratio is set at 80% (duration 400
ms).

545 35011386 05/2009



Advanced Instructions

Programming Example:

%I0.0  %l0.1

%PWMO.R:=20 LDN %I10.0

Rl

- ANDN  %I0.1

%I0.0  %I0.1

[%PWMO.R:=20]
%PWMO.R:=50 LD %l10.0

H

ANDN  %I0.1
[%PWMO.R:=50]

%l0.0  %l01

%PWMO R:=80 LD %I10.0

H—

AND 9I10.1
[%PWMO.R:=80]

2oPWMO
%010.2
|
TB
%PWMIi0.P

BLK %PWMO
LD 9%I0.2

N

END BLK

Special Cases

The following table shows a list of special operating of the PWM function block.

Special case

Description

Effect of a cold restart (%S0=1)

Sets the %PWMi.R ratio to 0. In addition, the value
for %PWMI.P is reset to the configured value, and
this will supersede any changes made with the
Animations Table Editor or the optional Operator
Display.

Effect of a warm restart (%S1=1)

Has no effect.

Effect due to the fact that outputs are
dedicated to the %PWM block

Forcing output %Q0.0.0 or %Q0.0.1 using a
programming device does not stop the signal
generation.

35011386 05/2009

546




Advanced Instructions

Pulse Generator Output Function Block (%PLS)

Introduction

The %PLS function block is used to generate square wave signals. There are two
%PLS functions available on the dedicated output channels %Q0.0.0 or %Q0.0.1.
The %PLS function block allows only a single signal width, or duty cycle, of 50%.

You can choose to limit the number of pulses or the period when the pulse train is
executed. These can be determined at the time of configuration and/or updated by

the user application.

NOTE: Controllers with relay outputs for these two channels do not support %PLS

function.

Representation

An example of the pulse generator function block in single-word mode:

%PLS30
—IN
B
SINGLE
ADJ
%PLSiP
—R

5475 Variable period
T

o TON=T/2 for the 0.142ms and 0.57ms time bases

= (%PLSi.P*TB)/2
o TON=[whole part(%PLSi.P)/2]*TB for the 10ms to 1s time bases.

547

35011386 05/2009



Advanced Instructions

Specifications

The table below contains the characteristics of the PLS function block:

Function | Object Description

Timebase |TB 0.142 ms, 0.57 ms, 10 ms, 1 sec

Preset %PLSi.P | Pulses on output %PLS1 are not stopped when %PLS1.N or

period %PLS1.ND* is reached for time bases 0.142 ms and 0.57 ms.
® 1< %PLSi.P <= 32767 for time base 10 msor1s
® 0 < %PLSi.P <= 255 for time base 0.57 ms or 0.142 ms
® 0 = Function not in use.

To obtain a good level of precision from the duty cycle with time
bases of 10ms and 1s, you are recommended to have a
%PLSi >= 100 if P is odd.
Number of | %PLSi.N | The number of pulses to be generated in period T can be limited to
pulses %PLSi.N | the range 0 <= %PLSi.N <= 32767 in standard mode or
D* 0 <= %PLSIi.ND <= 4294967295 in double word mode . The default
value is set to 0.
To produce an unlimited number of pulses, set %PLSi.N or
%PLSIi.ND to zero. The number of pulses can always be changed
irrespective of the Adjustable setting.

Adjustable | Y/N If setto Y, it is possible to modify the preset value %PLSi.P via the
HMI or Animation Tables Editor. Set to N means that there is no
access to the preset.

Pulse IN At state 1, the pulse generation is produced at the dedicated output

generation channel. At state 0, the output channel is set to 0.

input

Reset R At state 1, outputs %PLSi.Q and %PLSi.D are set to 0.The number

input of pulses generated in period T is set to 0.

Current %PLSi.Q | At state 1, indicates that the pulse signal is generated at the

pulse dedicated output channel configured.

output

generation

Pulse %PLSi.D | At state 1, signal generation is complete. The number of desired

generation pulses has been reached.

done

output

NOTE: (*) Means a double word variable.

35011386 05/2009

548




Advanced Instructions

Range of Periods

The preset value and the time base can be modified during configuration. They are
used to fix the signal period T=%PLSi.P * TB. The range of periods available:

e 0.142 ms to 36.5 ms in steps of 0.142 ms (27.4Hz to 7kHz)

e 0.57 msto 146 ms in steps of 0.57 ms (6.84 Hz to 1.75 kHz)

o 20 ms to 5.45 mins in steps of 10 ms

e 2 secto 9.1 hours in steps of 1 sec

Operation
The following is an illustration of the %PLS function block.

Input IN _ L] L L

Number of pulses

Dedicated output —1 LI LI LT [T T 111
%PLSI.Q _ [ | | |
[

%PLSI.D

-

Special Cases

Special case Description

Effect of cold restart (%S0=1) | Sets the %PLSi.P to that defined during configuration

Effect of warm restart Has no effect

(%S1=1)

Effect of modifying the preset | Takes effect immediately

(%PLSIi.P)

Effect due to the fact that Forcing output %Q0.0.0 or %Q0.0.1 using a programming

outputs are dedicated to the | device does not stop the signal generation.
%PLS block

NOTE: %PLSx.D is set when the number of desired pulses has been reached. It is
reset by either setting the IN or the R inputs to 1.

549 35011386 05/2009



Advanced Instructions

Drum Controller Function Block (%DR)

Introduction

The drum controller operates on a principle similar to an electromechanical drum
controller which changes step according to external events. On each step, the high
point of a cam gives a command which is executed by the controller. In the case of
a drum controller, these high points are symbolized by state 1 for each step and are
assigned to output bits %Qi.j, internal bits %Mi or AS interface slave output bits
%QAXx.y.z known as control bits.

lllustration
The following is an illustration of the drum controller function block.

%DRi

— U
STEPS 8

Drum controller function block

35011386 05/2009 550



Advanced Instructions

Parameters

The drum controller function block has the following parameters:

Parameter Label Value

Number %DRi 0 to 3 Compact Controller0 to 7 Modular Controllers

Current step number %DRi.S 0<%DRi.S<7. Word which can be read and written.
Written value must be a decimal immediate value.
When written, the effect takes place on the next
execution of the function block.

Number of steps 1 to 8 (default)

Input to return to step R (Reset) | At state 1, sets the drum controller to step 0.

0O(or instruction)

Advance input (or U (Upper) | On arising edge, causes the drum controller to

instruction) advance by one step and updates the control bits.

Output F (Full) Indicates that the current step equals the last step
defined. The associated bit %DRi.F can be tested
(for example, %DRi.F=1, if %DRi.S= number of
steps configured - 1).

Control bits Outputs or internal bits associated with the step (16

control bits) and defined in the Configuration Editor.

551

35011386 05/2009



Advanced Instructions

Drum Controller Function Block %DRi Operation

Introduction
The drum controller consists of:

e A matrix of constant data (the cams) organized in eight steps (0 to 7) and 16 data
bits (state of the step) arranged in columns numbered 0O to F.

e Alist of control bits is associated with a configured output (%Qi.j.k), memory word
(%Mi) or AS interface slave output (%QAXx.y.z). During the current step, the
control bits take on the binary states defined for this step.

The example in the following table summarizes the main characteristics of the drum

controller.

Column 0 1 2 D (o] F
Control bits  %Q0.1  %Q0.3 %Q1.5 %Q0.6 %Q0.5 %Q1.0
0 steps 0 0 1 1 1 0

1 steps 1 0 1 1 0 0

5 steps 1 1 1 0 0

6 steps 0 1 1 0 1

7 steps 1 1 1 1 0

Operation

In the above example, step 5 is the current step, control bits %Q0.1, %Q0.3, and
%Q1.5 are set to state 1; control bits %Q0.6, %Q0.5, and %Q1.0 are set to state 0.
The current step number is incremented on each rising edge at input U (or on
activation of instruction U). The current step can be modified by the program.

35011386 05/2009 552



Advanced Instructions

Timing Diagram

The following diagram illustrates the operation of the drum controller.

Step No. %DRIi.S

Output %DRi.F

Input U: § A4 /m

Input R:

0J112[3 [ L1 ]

Special Cases

The following table contains a list of special cases for drum controller operation.

Special case Description

Effects of a cold restart Resets the drum controller to step 0 (update of control bits).
(%S0=1)

Effect of a warm restart Updates the control bits after the current step.

(%S1=1)

Effect of a program jump

The fact that the drum controller is no longer scanned means the
control bits are not reset.

Updating the control bits

Only occurs when there is a change of step or in the case of a
warm or cold restart.

553

35011386 05/2009




Advanced Instructions

Programming and Configuring Drum Controllers

Introduction

Programming Example

The following illustration is a drum controller function block with examples of
reversible and non-reversible programming.

The following is an example of programming and configuring a drum controller. The
first six outputs %Q0.0 to %Q0.5 are activated in succession each time input %I0.1
is set to 1. Input 10.0 resets the outputs to 0.

%l0.0
H ——

%l0.1

H——

u

%DR1

STEPS 6

%008

]

Ladder diagram

BLK %DR1

LD %I0.0
R

LD %10.1
U

OUT BLK

LD F

ST %Q0.8
END BLK

35011386 05/2009

554



Advanced Instructions

Configuration

The following information is defined during configuration:

e Number of steps: 6

e The output states (control bits) for each drum controller step.

-

Step 1:

Step 2:

oo | N

Step 3:

—_

Step 4:

Step 5:

oO|lojoo|lOo|=+|O| =

Step 6:

o|oOo| o

oO|lOoO|=|O|lO|O|®
ol O|lOC|OC|O| &

- |lOoO|lOo|Oo|Oo|O| O

oOo|lojo/lo|lo|jo|o®»

oOojlojo|lo|lo|o| N

oO|lojo/lo|lo|o|®

oO|lojo|lo|lo|o|©

OO0/l |OC|O| =

[elNeoRNelNeNNe NN

OO 0O|lOC|OC|O| =

OO 0O|OC|OC|O| =
ojlojolo|o| o
O|lOo|0o|lOo|lO0o|O| =

e Assignment of the control bits.

1. | %Q0.0 4: | %Q0.1
%Q0.2 5: | %Q0.3
3: | %Q0.4 6: | %Q0.5

555

35011386 05/2009




Advanced Instructions

Fast Counter Function Block (%FC)

Introduction

lllustration

The Fast Counter function block (%FC) serves as either an up-counter or a down-

counter. It can count the rising edge of discrete inputs up to frequencies of 5 kHz()
in single word or double word computational mode. Because the Fast Counters are
managed by specific hardware interrupts, maintaining maximum frequency
sampling rates may vary depending on your specific application and hardware
configuration.

NOTE: (") For Twido Extreme TWDLEDCK1 PLC, the Fast Counter can count the
rising edge up to frequencies of 10 kHz.

The TWDLCe40DRF Compact controllers can accomodate up to four fast counters,
while all other series of Compact controllers can be configured to use a maximum of
three fast counters. Modular controllers can only use a maximum of two. The Fast
Counter function blocks %FCO0, %FC1, %FC2, and %FC3 use dedicated inputs
%10.0.2, %10.0.3, %10.0.4 and %I0.0.5 respectively. These bits are not reserved for
their exclusive use. Their allocation must be considered with the use of other
function blocks for these dedicated resources.

The following is an example of a Fast Counter function block in single-word mode.

%FC0

—IN Dr—
TYPE UP
SINGLE
ADJ
%EFCO0.P

—R

35011386 05/2009

556



Advanced Instructions

Parameters
The following table lists parameters for the Fast Counter function block.

Parameter Label Description

Function TYPE Set at configuration, this can be set to either up-count or down-
count.

Preset value Initial value may be set:
%FCi.P ->between 1 and 65535 in standard mode,
%FCi.PD |->between 1 and 4294967295 in double word mode,

Adjustable Y/N If setto Y, it is possible to modify the preset value %FCi.P or
%FCi.PD and the current value %FCi.V or %FCi.VD with the
Operator Display or Animation Tables Editor. If set to N, there is
no access to the preset.

Current Value | %FCi.V The current value increments or decrements according the up or
%FCi.VD | down counting function selected. For up-counting, the current
counting value is updated and can reach 65535 in standard
mode (%FCi.V) and 4294967295 in double word mode
(%FCi.VD). For down-counting, the current value is the preset
value %FCi.P or %FCi.PD and can count down to zero.

Enter to IN At state 1, the current value is updated according to the pulses
enable applied to the physical input. At state 0, the current value is held
at its last value.

Reset %FCi.R Used to initialize the block. At state 1, the current value is reset
to 0 if configured as an up-counter, or set to %FCi.P or %FCi.PD
if configured as a down-counter. The done bit %FCi.D is set
back to its default value.

Done %FCi.D This bitis setto 1 when %FCi.V or %FCi.VD reaches the %FCi.P
or %FCi.PD configured as an up-counter, or when %FCi.V or
%FCi.VD reaches zero when configured as a down-counter.
This read-only bit is reset only by the setting %FCi.R to 1.

Special Note

If configured to be adjustable, then the application can change the preset value
%FCi.P or %FCi.PD and current value %FCi.V or %FCi.VD at any time. But, a new
value is taken into account only if the input reset is active or at the rising edge of
output %FCi.D. This allows for successive different counts without the loss of a
single pulse.

557 35011386 05/2009



Advanced Instructions

Operation

If configured to up-count, when a rising edge appears at the dedicated input, the
current value is incremented by one. When the preset value %FCi.P or %FCi.PD is
reached, the Done output bit %FCi.D is set to 1.

If configured to down-count, when a rising edge appears at the dedicated input, the
current value is decreased by one. When the value is zero, the Done output bit
%FCi.D is setto 1.

Configuration and Programming

Special Cases

In this example, the application counts a number of items up to 5000 while %lI1.1 is
setto 1. The input for %FCO is the dedicated input %10.0.2. When the preset value
is reached, %FCO0.D is set to 1 and retains the same value until %FCO.R is
commanded by the result of "AND" on %l1.2 and %MO0.

%I1.1 2Q0.0
4{ IN D BLK %FCO
F b FCO —( D oell 1
IN
s oo TYPE UP LD %11.2
- SINGLE AND %MO
# }7 R éli?g) P 5000 R
o OUT BLK
LD D
ST %Q0.0
END BLK

The following table contains a list of special operating cases for the %FC function
block:

Special case Description

Effect of cold restart (%S0=1) Resets all the %FC attributes with the values
configured by the user or user application.

Effect of warm restart (%S1=1) Has no effect.

Effect of Controller stop The %FC continues to count with the parameter

settings enabled at the time the controller was stopped.

35011386 05/2009

558



Advanced Instructions

Very Fast Counter Function Block (%VFC)

Introduction

The Very Fast Counter function block (%VFC) can be configured by TwidoSuite to
perform any one of the following functions:

e Up/down counter

e Up/down 2-phase counter

e Single Up Counter

e Single Down Counter

e Frequency Meter

The %VFC supports counting of discrete input up to frequencies of 20kHz in single
word or double word computational mode. The TWDLCe*40DRF Compact
controllers can accomodate up to two very fast counters, while all other series of
Compact controllers can configure one very fast counter (%VFC). Modular
controllers can configure up to two very fast counters (%VFC).

Dedicated I/O Assignments

The Very Fast Counter function blocks (%VFC) use dedicated inputs and auxiliary
inputs and outputs. These inputs and outputs are not reserved for their exclusive
use. Their allocation must be considered with the use of other function blocks for
these dedicated resources. The following array summarizes these assignments:

Main inputs Auxiliary inputs Reflex outputs
%VFCO | Selected Use IA input | IB input IPres Ica Qutput 0 Qutput 1
Up/down counter %I10.0.1 | %l0.0.0 %10.0.2 (1) | %10.0.3 (1) | %Q0.0.2 (1) | %Q0.0.3 (1)
(UP=0/DO=1)

Up/Down 2-Phase %I10.0.1 | %l0.0.0 %10.0.2 (1) | %10.0.3 (1) | %Q0.0.2 (1) | %Q0.0.3 (1)
Counter (Pulse)

Single Up Counter %l10.0.1 | (2) %10.0.2 (1) | %10.0.3 (1) | %Q0.0.2 (1) | %Q0.0.3 (1)
Single Down Counter %10.0.1 | (2) %10.0.2 (1) | %10.0.3 (1) | %Q0.0.2 (1) | %Q0.0.3 (1)
Frequency Meter %10.0.1 | (2) 2) 2) 2) 2)

559

35011386 05/2009




Advanced Instructions

Main inputs Auxiliary inputs Reflex outputs
%VFC1 | Selected Use IA input | Input IB) IPres Ica Output 0 Output 1
Up/down counter %10.0.7 | %I0.0.6 %I10.0.5 (1) | %10.0.4 (1) | %Q0.0.4 (1) | %Q0.0.5 (1)
(UP=0/DO =
1)
Up/Down 2-Phase %10.0.7 | %I0.0.6 %I10.0.5 (1) | %10.0.4 (1) | %Q0.0.4 (1) | %Q0.0.5 (1)
Counter (Pulse)
Single Up Counter %10.0.7 | (2) %I10.0.5 (1) | %10.0.4 (1) | %Q0.0.4 (1) | %Q0.0.5 (1)
Single Down Counter %10.0.7 | (2) %I10.0.5 (1) | %10.0.4 (1) | %Q0.0.4 (1) | %Q0.0.5 (1)
Frequency Meter %l10.0.7 | (2) 2) 2 ) @)
Comments:

(1) = optional Input IA = pulse input

(2) = not used Input IB = pulses or UP/DO

Ipres = preset input UP/DO = Up / Down counting

Ica= Catch input

When not used, the input or output remains a normal discrete 1/0 available to be managed by the

application in the main cycle.

If %10.0.2 is used %FCO0 is not available.

If %10.0.3 is used %FC2 is not available.

If %10.0.4 is used %FC3 is not available.

lllustration

Here is a block representation of the Very Fast Counter (%VFC) in single-word
mode:

%VECO
—IN FI—

TYPE UP/DN
SINGLE 1|
T OUTO
T OUTI
AD]
%VECOP

—8 TH1 —

THO ——

Specifications

The following table lists characteristics for the very fast counter (%VFC) function
block.

35011386 05/2009 560



Advanced Instructions

Function Description Values %VFC Run-time
Use Access
Current Value | Current value that is increased or decreased according | %VFCi.V:0-> |CM Read
(%VFCi.V) to the physical inputs and the function selected. This 65535
(%VFCi.VD*) | value can be preset or reset using the preset input %VFCi.VD: 0 ->
(%VFCi.S). 4294967295
Preset value | Only used by the up/down counting function and single | %VFCi.P: 0-> |CM or FM | Read and
(%VFCi.P) up or down counting. 65535 Write (1)
(%VFCi.PD*) %VFCi.PD: 0 ->
4294967295
Capture Only used by the up/down counting function and single | %VFCi.C:0-> |CM Read
Value up or down counting. 65535
(%VFCi.C) %VFCi.CD: 0 ->
(%VFCi.CD¥) 4294967295
Counting Set by the system, this bit is used by the up/down 0 (Down CM Read
direction counting function to indicate to you the direction of counting)
(%VFCi.U) counting: 1 (Up counting)
As a single phase up or down counter, %I0.0.0 decides
the direction for %VFCO0 and %10.0.6 for %VFC1.
For a two-phase up/down counter, it is the phase
difference between the two signals that determines the
direction.
For %VFCO0, %I0.0 is dedicated to IB and %I0.1 to IA.
For %VFC1, %I0.6 is dedicated to IB and %I0.7 to IA.
Enable Validate Reflex Output O 0 (Disable) CM Read and
Reflex Output 1 (Enable) Write (2)
0
(%VFCi.R)
Enable Validate Reflex Output 1 0 (Disable) CM Read and
Reflex Output 1 (Enable) Write (2)
1
(%VFCi.S)
Threshold This word contains the value of threshold 0. The %VFCi.S0: 0 -> |CM Read and
Value SO meaning is defined during configuration of the function | 65535 Write (1)
(%VFCi.S0) | block. Note: This value must be less than %VFCi.S1. %VFCi.S0D: 0 -
(%VFCi.SoD* > 4294967295
)
Threshold This word contains the value of threshold 0. The %VFCi.S1: 0-> |CM Read and
Value S1 meaning is defined during configuration of the function | 65535 Write (1)
(%VFCi.S1) | block. Note: This value must be greater than %VFCi.S0. | %VFCi.S1D: 0 -
(%VFCi.S1D* > 4294967295
)

561

35011386 05/2009




Advanced Instructions

Function Description Values %VFC Run-time
Use Access
Frequency Configuration item for 100 or 1000 millisecond time 1000 or 100 FM Read and
Measure base. Write (1)
Time Base
(%VFCi.T)
Adjustable Configurable item that when selected, allows the userto | N (No) CMorFM | No
(Y/N) modify the preset, threshold, and frequency measure Y (Yes)
time base values while running.
Enter to Used to validate or inhibit the current function. 0 (No) CMor FM | Read and
enable Write (3)
(IN)
Preset input | Depending on the configuration, at state 1: Oori1 CMor FM | Read and
(S) e Up/Down if down function in progress, Up/down Write
2-phase or Single Down Counting: initializes the
current value with the preset value.
e Up/Down if up function in progress or Single Up
Counting: resets the current value to zero.
In addition, this also initializes the operation of the
threshold outputs and takes into account any user
modifications to the threshold values set by the Operator
Display or user program.
Overflow 0 to 65535 or from 65535 to 0 in standard mode Oor1 CM Read
output 0 to 4294967295 or from 4294967295 to 0 in double
(F) word mode
Threshold Set to 1 when the current value is greater than or equal |0 or 1 CM Read
Bit 0 to the threshold value %VFCi.SO0. It is advisable to test
(%VFCi.THO) | this bit only once in the program because it is updated in
real time. The user application is responsible for the
validity of the value at its time of use.
Threshold Set to 1 when the current value is greater than or equal |0 or 1 CM Read
Bit 1 to the threshold value %VFCi.S1. It is advisable to test
(%VFCi.TH1) | this bit only once in the program because it is updated in
real time. The user application is responsible for the
validity of the value at its time of use.
35011386 05/2009 562




Advanced Instructions

(*)Means a 32-bit double word variable. The double word option is available on all

controllers with the exception of the Twido TWDLCeA10DRF controllers.

(1) Writable only if Adjust is set to one.
(2) Access available only if configured.

(3) Read and write access only through the application. Not the Operator Display or

Animation Tables Editor.
CM = Counting Mode
FM = Frequency Meter Mode

Counting Function Description

The very fast counting function (%VFC) works at a maximum frequency of 20 kHz,
with a range of 0 to 65535 in standard mode and 0 to 4294967295. The pulses to

be counted are applied in the following way:

Function Description %VFCO %VFCA
1A 1B 1A 1B
Up/Down Counter | The pulses are applied to the physical input, the %I0.0.1 %I0.0.0 | %10.0.7 | %I0.0.6
current operation (upcount/downcount) is given by
the state of the physical input IB.
Up/Down 2-Phase | The two phases of the encoder are applied to %I10.0.1 %I0.0.0 | %10.0.7 | %I0.0.6
Counter physical inputs |A and IB.
Single Up Counter | The pulses are applied to the physical input IA. IBis | %I0.0.1 ND %l0.0.7 | ND
not used.
Single Down The pulses are applied to the physical input IA. IB is | %10.0.1 ND %l0.0.7 |ND
Counter not used.
563 35011386 05/2009




Advanced Instructions

Notes on Function Blocks

Upcount or downcount operations are made on the rising edge of pulses, and only
if the counting block is enabled.

There are two optional inputs used in counting mode: ICa and IPres. ICa is used to
capture the current value (%VFCi.V or %VFCi.VD) and stored it in %VFCi.C or
%VFCi.CD. The Ica inputs are specified as %10.0.3 for %VFCO0 and %I0.0.4 for
%VFC1 if available.

When IPres input is active, the current value is affected in the following ways:

e For up counting, %VFCi.V or %VFCi.VD is reset to 0

e For downcounting, %VFCi.V or %VFCi.VD is written with the content of %VFCi.P
or %VFCi.PD, respectively.

e For frequency counting, %VFCi.V or %VFCi.PD is setto 0

Important: %VFCi.F is also set to 0. The IPres inputs are specified as %10.0.2 for
%VFCO and %I0.0.5 for %VFC1 if available.

Notes on Function Block Outputs

For all functions, the current value is compared to two thresholds (%VFCi.S0 or
%VFCi.S0D and % VFCi.S1 or %VFCi.S1D). According to the result of this
comparison two bit objects (%VFCi.THO and %VFCi.TH1) are set to 1 if the current
value is greater or equal to the corresponding threshold, or reset to 0 in the opposite
case. Reflex outputs (if configured) are set to 1 in accordance with these
comparisons. Note: None, 1 or 2 outputs can be configured.

%VFC.U is an output of the FB, it gives the direction of the associated counter
variation (1 for UP, O for DOWN).

35011386 05/2009

564



Advanced Instructions

Counting Function Diagram

The following is a counting function diagram in standard mode (in double word
mode, you will use the double word function variables, accordingly):

1A = Up counter input
(Single signal or phase 1)

g
&
IN %VFCi — + %WVFCi.U
_ %VFC Counter Dgsgﬂg: ;f
IB = (UP/DOWN flag or phase 2) & P -

>
L %VFCi.F

/'
-
g
>
L
I—

IPres = (Preset Input)

%VFCiV
>1 —» Current Value Current
S %VFCi value
%ICa = Catch input > VFCI.C
Catch
51 value
Read %VFCiV
instruction %VECL.THO
%VFCi.S0
Threshold ——Pp
Value 0 . %VFCi.TH1
Comparison
GUFGIi St &——P  %aoox
Threshold —— 5;23‘ 0
Value 1
&
%VFGIR > %000y
Reflex
or tput 1
%VFCIS outp
Enable

NOTE: Outputs are managed independently from the controller cycle time. The
response time is between 0 and 1ms.

565 35011386 05/2009



Advanced Instructions

Single Up Counter Operation
The following is an example of using %VFC in a single up counter mode. The
following configuration elements have been set for this example:

%VFCO.P preset value is 17, while the %VFCO0.S0 lower threshold value is 14, and
the %VFCO0.S1 upper threshold is 20.

Reflex value < %VFC.S0 | %VFCO0.S0 <= value < %VFC0.S1 | value >= %VFC0.S1
Output

%Q0.0.2 X

%Q0.0.3 | X X

35011386 05/2009 566




Advanced Instructions

A timing chart follows:

%VFCO.P =17
%VFC0.50=14
%VFC0.81=20

@, : S AR A

IN

%VFCOV 0

wo o LLITL L

mo LT

Rty o Lo LT
m I —

Reflex
output 1

1 %VFCO.U = 1 because %\VFC is an up-counter
: change %\VFC0.51 to 17

: S input active makes threshold S1 new value to be granted in next count

® & e @

: a catch of the current value is made, so %UVFC0.C =17

567 35011386 05/2009



Advanced Instructions

Single Down Counter Operation
The following is an example of using %VFC in a single down counter mode. The
following configuration elements have been set for this example:

%VFCO.P preset value is 17, while the %VFCO0.S0 lower threshold value is 14, and
the %VFCO0.S1 upper threshold is 20.

Reflex value < %VFC.S0 | %VFCO0.S0 <= value < %VFC0.S1 | value >= %VFC0.S1
Output

%Q0.0.2 | X X

%Q0.0.3 X

35011386 05/2009 568




Advanced Instructions

Example:

%VFCO.P =17
%VFC0.50=14
%\VFC0.81=20

CDI I }@Z} } @} @} @}
i

65535

%VFCOV 0

THO

TH1

Reflex
output 0

Reflex
output 1

1 %VFCO.U = 0 because %VFC is a down-counter
: change %VFCO.P to 20

: change %VFC0.51 to 17

: 8 input active makes threshold 51 new value to be granted in next count

@ e

: a catch of the current value is made, so %VFCO0.C =17

569 35011386 05/2009



Advanced Instructions

Up-Down Counter Operation
The following is an example of using %VFC in an up-down counter mode. The
following configuration elements have been set for this example:

%VFCO.P preset value is 17, while the %VFCO0.S0 lower threshold value is 14, and
the %VFCO0.S1 upper threshold is 20.

Reflex value < %VFC.S0 | %VFCO0.S0 <= value < %VFC0.S1 | value >= %VFC0.S1
Output

%Q0.0.2 X

%Q0.0.3 | X X

35011386 05/2009 570



Advanced Instructions

Example:

%VFCO.P =17
%VFC0.80 =14
%VFC0.51=20

%VFCOV 0

THO Z |—[ Lo
T B
Reflex ' '

output 0 ! S
Reflex —|_|—|_| —
output 1 ' L L .

Lo

:Input IN is set to 1 and input S set to 1
: change %VFCO.P to 20
: change %\VFC0.51 to 17

: 8 input active makes threshold S1 new value to be granted in next count

@ ®eee

: a catch of the current value is made, so %VFC0.C =17

571 35011386 05/2009



Advanced Instructions

Frequency Meter Function Description

The frequency meter function of a %VFC is used to measure the frequency of a
periodic signal in Hz on input IA. The frequency range which can be measured is
from 10 to 20kHz. The user can choose between 2 time bases, the choice being
made by a new object %VFC.T (Time base). A value of 100 = time base of 100 ms
and a value of 1000 = time base of 1 second.

Time Base | Measurement range | Accuracy Update

100 ms 100 Hz to 20 kHz 0.05 % for 20 kHz, 10 % for 10 times per second
100 Hz

1s 10 Hz to 20 kHz 0.005 % for 20 kHz, 10 % for | Once per second
10 Hz

Frequency Meter Function Diagram

The following is a frequency meter function diagram:

1A
>
Signal to be measured +
&
g %VFC Counter
IN%VFCi ——p
@ %VFCIF
Overflow
output
S %VFCi %VFCiV
Set 4 Current Value - Frequency
current measured
value to O
%\VFCIT {}
Select >
time 1000ms — 100 ms
base

35011386 05/2009

572




Advanced Instructions

Frequency Meter Operation

The following is a timing diagram example of using %VFC in a frequency meter
mode.

oF e @

Timebase
%VFCO.V ] ‘ fl l 2 Z| . 0
@ : The first frequency measurement starts here.
@ : The cumrent frequency value is upcdlated.
OF Input IN is 1 and input S is 1
@ : Change %VFCO.T to 100 ms: this change cancels the current measurement

and starts another one.

Special Cases
The following table shows a list of special operating of the %VFC function block.

Special case Description

Effect of cold restart (%S0=1) Resets all the %VFC attributes with the values
configured by the user or user application.

Effect of warm restart (%S1=1) Has no effect

Effect of Controller stop The %VFC stops its function and the outputs stay in

their current state.

573 35011386 05/2009



Advanced Instructions

Transmitting/Receiving Messages - the Exchange Instruction (EXCH)

Introduction

A Twido controller can be configured to communicate with Modbus slave devices or
can send and/or receive messages in character mode (ASCII).

TwidoSuite provides the following functions for these communications:
e EXCH instruction to transmit/receive messages
e Exchange control function block (%MSG) to control the data exchanges

The Twido controller uses the protocol configured for the specified port when
processing an EXCH instruction. Each communication port can be assigned a
different protocol. The communication ports are accessed by appending the port
number to the EXCH or %MSG function (EXCH1, EXCH2, %MSG1, %MSG2).

In addition, TWDLC*E40DRF series controllers implement Modbus TCP messaging
over the Ethernet network by using the EXCHS3 intruction and %MSG3 function.

EXCH Instruction

The EXCH instruction allows a Twido controller to send and/or receive information
to/from ASCII devices. The user defines a table of words (%sMWi:L) containing the
data to be sent and/or received (up to 250 data bytes in transmission and/or
reception). The format for the word table is described in the paragraphs about each
protocol. A message exchange is performed using the EXCH instruction.

Syntax
The following is the format for the EXCH instruction:
[EXCHx %MWi:L]
Where: x = serial port number (1 or 2); x = Ethernet port (3); L = total number of

words of the word table (maximum 121). Values of the internal word table %MWi:L
are such as i+L <= 255.

The Twido controller must finish the exchange from the first EXCHXx instruction
before a second exchange instruction can be started. The %MSG function block
must be used when sending several messages.

NOTE: To find out more information about the Modbus TCP messaging instruction
EXCHS, please refer to .

35011386 05/2009 574



Advanced Instructions

Exchange Control Function Block (%MSGx)

Introduction

lllustration

NOTE: The "x" in %MSGx signifies the controller port: "x = 1 or 2"

e x =1 or 2, signifies the serial port 1 or 2 of the controller, respectively;

e x = 3, signifies the Ethernet network port of the controller (on TWDLC*E40DRF
controllers only). For more information about the %MSG3 function, please refer
to.

The %MSGx function block manages data exchanges and has three functions:

e Communications error checking:
Error checking verifies that the block length (word table) programmed with the
EXCH instruction is large enough to contain the length of the message to be sent
(compare with length programmed in the least significant byte of the first word of
the word table).
Error 1 : Invalid command, table incorrectly configured, incorrect character
received (speed, parity, etc.) or reception table full (not updated).

e Coordination of multiple messages:
To ensure coordination when sending multiple messages, the %MSGx function
block provides the information required to determine when a previous message
is complete.

e Transmission of priority messages:
The %MSGx function block allows the current message transmission to be
stopped, in order to allow the immediate sending of an urgent message.

The programming of the %MSGx function block is optional.

The following is an example of the %MSGx function block.

%MSG1

575

35011386 05/2009



Advanced Instructions

Parameters

Reset Input (R)

The following table lists parameters for the %MSGx function block.

Parameter Label Value
Reset input (or | R At state 1, reinitializes communication: %MSGx.E = 0 and
instruction) %MSGx.D = 1.
Comm. done %MSGx.D State 1, comm. done, if:
output ® End of transmission (if transmission)
o End of reception (end character received)
e Error

® Reset the block

State 0, request in progress.

"Detected Error" | %MSGx.E State 1, comm. done, if:

output o Bad command

® Table incorrectly configured

® Incorrect character received (speed, parity, etc.)
® Reception table full (not updated)

State 0, message length OK, link OK.

If an error occurs when using an EXCH instruction, bits %MSGx.D and %MSGx.E
are set to 1, and system word %SW63 contains the error code for Port 1, and
%SW64 contains the error code for Port 2. See System Words (%SW), page 727.

When Reset Input set to 1:

e Any messages that are being transmitted are stopped.
e The "Detected Error" output is reset to 0.
e The Done bit is set to 1.

A new message can now be sent.

"Detected Error" Output (%MSGx.E)

The "detected error" output is set to 1 either because of a communications
programming error or a message transmission error. The "detected error "output is
set to 1 if the number of bytes defined in the data block associated with the EXCH
instruction (word 1, least significant byte) is greater than 128 (+80 in hexadecimal
by FA).

The "detected error" output is also set to 1if a problem exists in sending a Modbus
message to a Modbus device. In this case, the user should check wiring, and that
the destination device supports Modbus communication.

35011386 05/2009

576



Advanced Instructions

Communications Done output (%.MSGx.D)
When the Done output is set to 1, the Twido controller is ready to send another
message. Use of the %MSGx.D bit is recommended when multiple messages are
sent. If it is not used, messages may be lost.

Transmission of Several Successive Messages

Execution of the EXCH instruction activates a message block in the application
program. The message is transmitted if the message block is not already active
(%MSGx.D = 1). If several messages are sent in the same cycle, only the first
message is transmitted. The user is responsible for managing the transmission of
several messages using the program.

Example of a transmission of two messages in succession on port 2:

9100 %MSG2D EXCH2%MW2:4
%PI | | [|LDR  %I0.0
I I AND  %MSG2D
%MO [EXCHZ %MW2:4]
fs>7 S %MO
Y
LD %MSG2.D
%MSGD  %MO0 EXCH2%MW8:3 AND O/ZMO
4{ } | } — || [EXCH2 %MW8:3]
R %MO
%MO
/
(R}

Reinitializing Exchanges
An exchange is cancelled by activating the input (or instruction) R. This input
initializes communication and resets output %MSGx.E to 0 and output %MSGx.D to
1. It is possible to reinitialize an exchange if an error is detected.

Example of reinitializing an exchange:

MG BLK  %MSGI
o o
7oMO LD %MO
4{ }— R D R
END_BLK
E

577 35011386 05/2009



Advanced Instructions

Special Cases

The following table the special operating cases for the %MSGx function block.

Special Case

Description

Effect of a cold restart (%S0=1)

Forces a reinitialization of the communication.

Effect of a warm restart (%S1=1)

Has no effect.

Effect of a controller stop

If a message transmission is in progress, the
controller stops its transfer and reinitializes the
outputs %MSGx.D and %MSGx.E.

35011386 05/2009

578




Advanced Instructions

18.2 Clock Functions

Aim of this Section
This section describes the time management functions for Twido controllers.

What's in this Section?
This section contains the following topics:

Topic Page
Clock Functions 580
Schedule Blocks 581
Time/Date Stamping 584
Setting the Date and Time 586

579 35011386 05/2009



Advanced Instructions

Clock Functions

Introduction

Twido controllers have a time-of-day clock function, which requires the Real-Time

Clock option (RTC) and provides the following:

e Schedule blocks are used to control actions at predefined or calculated times.

e Time/date stamping is used to assign time and dates to events and measure
event duration.

The Twido time-of-day clock can be accessed by selecting Schedule Blocks from
from the TwidoSuite Program — Configure — Configure Datatask. Additionally, the
time-of-day clock can be set by a program. Clock settings continue to operate for up
to 30 days when the controller is switched off, if the battery has been charged for at
least six consecutive hours before the controller is switched off.

The time-of-day clock has a 24-hour format and takes leap years into account.

RTC Correction Value

The RTC Correction value is necessary for the correct operation of the RTC. Each
RTC unit has its own correction value written on the unit. This value is configurable
in TwidoSuite by using the Configure RTC option from the TwidoSuite Monitoring
Utility accessible via the TwidoSuite Application Launcher.

35011386 05/2009

580



Advanced Instructions

Schedule Blocks

Introduction

Schedule Blocks are used to control actions at a predefined month, day, and time.
A maximum of 16 schedule blocks can be used and do not require any program
entry.

NOTE: Check system bit %S51 and system word %SW118 to confirm that the Real-
Time Clock (RTC) option is installed see System Bits (%S), page 719. The RTC
option is required for using schedule blocks.

Parameters
The following table lists parameters for a schedule block:

Parameter Format Function/Range

Schedule block n n=0to 15

number

Configured Check box Check this box to configure the selected schedule block
number.

Output bit %Qx.y.z Output assignment is activated by schedule block: %Mi
or %Qj.k.

This output is set to 1 when the current date and time
are between the setting of the start of the active period
and the setting of the end of the active period.

Start month January to The month to start the schedule block.
December
End month January to The month to end the schedule block.
December
Start date 1-31 The day in the month to start the schedule block.
End date 1-31 The day in the month to end the schedule block.
Start time hh:mm The time-of-day, hours (0 to 23) and minutes (0 to 59),
to start the schedule block.
Stop time hh:mm The time-of-day, hours (0 to 23) and minutes (0 to 59),
to end the schedule block.
Day of week Monday to Check boxes that identify the day of the week for
Sunday activation of the schedule block.

581 35011386 05/2009



Advanced Instructions

Enabling Schedule Blocks

The bits of system word %SW114 enable (bit set to 1) or disable (bit set to 0) the
operation of each of the 16 schedule blocks.

Assignment of schedule blocks in %SW114:

%SW114\‘\|\|H|\||\|H||
Schedule Schedule
block #15 block #0

By default (or after a cold restart) all bits of this system word are set to 1. Use of

these bits by the program is optional.

Output of Schedule Blocks
If the same output (%Mi or %Qj.k) is assigned by several blocks, it is the OR of the
results of each of the blocks which is finally assigned to this object (it is possible to
have several "operating ranges" for the same output).

Example

The following table shows the parameters for a summer month spray program

example:

Parameter Value Description

Schedule block 6 Schedule block number 6

Output bit %Q0.2 Activate output %Q0.2

Start month June Start activity in June

End month September Stop activity in September

Start date 21 Start activity on the 21st day of June

End date 21 Stop activity on the 21st day of September
Day of week Monday, Wednesday, | Run activity on Monday, Wednesday and

Friday Friday
Start time 21:00 Start activity at 21:00
Stop time 22:00 Stop activity at 22:00

35011386 05/2009

582



Advanced Instructions

Using the following program, the schedule block can be disabled through a switch
or a humidity detector wired to input %I10.1.

%l10.1

%SW114:X6 LD
| {
| { ST

%510.1
%SW114:X6

The following timing diagram shows the activation of output %Q0.2.

%10.1
21 June

%Q0.2

Time Dating by Program
Date and time are both available in system words %SW50 to %SW53 (see System
Words (%SW), page 727). Itis therefore possible to perform time and date stamping
in the controller program by making arithmetic comparisons between the current
date and time and the immediate values or words %MWi (or %KWi), which can

contain setpoints.

583

35011386 05/2009



Advanced Instructions

Time/Date Stamping

Introduction

System words %SW49 to %SW53 contain the current date and time in BCD format
(see Review of BCD Code, page 518, which is useful for display on or transmission
to a peripheral device. These system words can be used to store the time and date
of an event (see System Words (%SW), page 727.

NOTE: Date and time can also be set by using the optional Operator Display (see
Time of Day Clock, page 404).

Dating an Event

To date an event it is sufficient to use assignment operations, to transfer the
contents of system words to internal words, and then process these internal words
(for example, transmission to display unit by EXCH instruction).

Programming Example
The following example shows how to date a rising edge on input %I0.1.

LDR  %I0.0
[26MW11:5 = %SWA49:5]

-

%10.0 YMWI1:5 = %SW49.5 ﬂ‘

Once an event is detected, the word table contains:

Encoding | Most significant byte | Least significant byte
%MW11 Day of the week!
%MW12 00 Second

%MW13 Hour Minute

%MW14 Month Day

%MW15 Century Year

NOTE: (1) 1 = Monday, 2 = Tuesday, 3 = Wednesday, 4 = Thursday, 5 = Friday, 6
= Saturday, 7 = Sunday.

35011386 05/2009 584



Advanced Instructions

Example of Word Table
Example data for 13:40:30 on Monday, 19 April, 2002:
Word Value (hex) Meaning
%MW 11 0001 Monday
%MW12 0030 30 seconds
%MW13 1340 13 hours, 40 minutes
%MW14 0419 04 = April, 19th
%MW15 2002 2002

Date and time of the last stop

System words %SW54 to %SW57 contain the date and time of the last stop, and
word %SW58 contains the code showing the cause of the last stop, in BCD format
(see System Words (%SW), page 727).

585 35011386 05/2009



Advanced Instructions

Setting the Date and Time

Introduction

You can update the date and time settings by using one of the following methods:

e TwidoSuite
Use the Adjust Time dialog box. This dialog box is available from either
e the TwidoSuite Monitoring Utility accessible via the TwidoSuite
Application Launcher or
e by selecting Program — Debug, connecting yourself and selecting Check
PLC.

e System Words
Use system words %SW49 to %SW53 or system word %SW59.

The date and time settings can only be updated when the RTC option cartridge
(TWDXCPRTC) is installed on the controller. Note that the TWDLCe*40DRF series
of compact controllers and the Twido Extreme TWDLEDCK1 PLC have an
integrated RTC onboard.

Using %SW49 to %SW53

To use system words %SW49 to %SW53 to set the date and time, bit %S50 must
be set to 1. This results in the following:

e Cancels the update of words %SW49 to %SW53 via the internal clock.

e Transmits the values written in words %SW49 to %SW53 to the internal clock.

35011386 05/2009

586



Advanced Instructions

Programming Example:

%350

%6350

H |

%I0.1

(W

%SW49 = %MW10

e

%SWS0 = %MWI11

%SW51 = %MW12

%SW52 = %MWI13

YoSW53 = %MW14

%3850

(5

LD %350
R %350
LDR %I0.1

[%SWA49 = %MW10]
[%SW50 = %MW11]
[%SW51 = %MW12]
[%SW52 = %MW13]
[%SW53 = %MW14]
8 %850

Words %MW10 to %MW14 will contain the new date and time in BCD format (see
Review of BCD Code, page 518) and will correspond to the coding of words %SW49

to %SW53.

The word table must contain the new date and time:
Encoding | Most significant byte | Least significant byte
%MW10 Day of the week
%MW11 Second
%MW12 Hour Minute
%MW13 Month Day
%MW14 Century Year

NOTE: (1) 1 = Monday, 2 = Tuesday, 3 = Wednesday, 4 = Thursday, 5 = Friday, 6

= Saturday, 7 = Sunday.

587

35011386 05/2009




Advanced Instructions

Example data for Monday, 19 April, 2002:

Word Value (hex) | Meaning

%MW10 | 0001 Monday

%MW11 0030 30 seconds

%MW12 1340 13 hours, 40 minutes
%MW13 0419 04 = April, 19th
%MW14 2002 2002

Using %SW59

Another method of updating the date and time is to use system bit %S59 and date
adjustment system word %SW59.

Setting bit %S59 to 1 enables adjustment of the current date and time by word

%SW59 (see System Words (%SW), page 727). %SW59 increments or decrements
each of the date and time components on a rising edge.

Application Example

The following front panel is created to modify the hour, minutes, and seconds of the
internal clock.

Hour

Minute Second

13

40

30

® ©
+ -

Hours
/_

—— Minutes

A

Seconds

Description of the Commands:

e The Hours/Minutes/Seconds switch selects the time display to change using
inputs %I10.2, %I0.3, and %I0.4 respectively.

e Push button "+" increments the selected time display using input %I0.0.

e Push button "-" decrements the selected time display using input %I0.1.

35011386 05/2009

588



Advanced Instructions

The following program

reads the inputs from the panel and sets the internal clock.

%MO %359
| ;o
| L
%102 %210.0 %3 W59 X3
| | ol I
— | 1P| L
%I0.2 %I0.1 28W59:X11
| | ol I
— | 1P| L
%103 %210.0 %203 W59:X2
| | ol I
— | 1P| S
%10.3 %10.1 %S W59:X10
| ol /S
— | 1P| L)
%104 %10.0 %SWS59: X1
| ol [
— | 1P| L
%I04 %510.1 %S W59 X9
| | ol I
— | 1P| (S

LD
ST
LD
ANDR
ST
LD
ANDR
3T
LD
ANDR
ST
LD
ANDR
ST
LD
ANDR
ST
LD
ANDR
ST

%oMO
%359
%10.2
%I0.0
%0SW59:X3
%I0.2
%I0.1
%3W359:X11
%I0.3
%I0.0
%8W359:X2
%I0.3
%10.1
%SW59:X10
%I0.4
%I0.0
%3W59:X1
%10.4
%I0.1
%8W59:X9

(Hour)

(Minute)

(Second)

589

35011386 05/2009



Advanced Instructions

18.3 Twido PID Quick Start Guide

Overview

This section contains information for getting started with the PID control and Auto-

Tuning functions available on Twido controllers.

What's in this Section?
This section contains the following topics:

Topic Page
Purpose of Document 591
Step 1 - Configuration of Analog Channels Used for Control 593
Step 2 - Prerequisites for PID Configuration 595
Step 3 — Configuring the PID 597
Step 4 - Initialization of Control Set-Up 603
Step 5 - Control Set-Up AT + PID 608
Step 6 - Debugging Adjustments 612
35011386 05/2009 590




Advanced Instructions

Purpose of Document

Introduction

This quick start guide aims to guide you, by providing examples, through all the
steps required to correctly configure and set up your Twido controller's PID control
functions.

NOTE: Implementing the PID function on a Twido does not require an advanced
level of system understanding, but does demand a certain degree of rigor for good
results.

This document contains:
This document explains the following steps:

Step Description

Configuration of analog channels used for control

Prerequisites for PID configuration

PID configuration

Initialization of control setup.

AT + PID control setup

|| OIN| =

Debugging and adjustments

Concerning the example used in this guide
For this example, we have chosen a Type K ThermoCouple (0-200°).

We will use transistor control with the output therefore being a base controller output
controlled directly by the PID controller using PWM (see Step 3 — Configuring the
PID, page 597

591 35011386 05/2009



Advanced Instructions

The diagram below shows the experimental setup used in the example:

; Resistor :

TWDLMDAZ0DRT  TWDALMALT]
O .00
- comi+
= ""."_“+Z4 l_
| (w0
s |8
s |o
= INO-+] Green
i
E

e B L PR B R

230 VAG

35011386 05/2009

592



Advanced Instructions

Step 1 - Configuration of Analog Channels Used for Control

Introduction

In general, a PID controller uses an analog feedback signal (known as the "process
value") to measure the value to be adjusted.

This value can be a level, a temperature, a distance, or another value for other
applications.

Example of an Analog Measurement Signal

Let us take the example of a temperature measurement.

The sensor sends an analog measurement which depends on the measured value
back to the controller. For temperature and with sensors such as PT100s or
Thermocouples, the measured signal increases with an increase in current
temperature.

How to Add an Analog Card (Expansion Module)

In offline mode, once you have selected the base controller, add the analog card as
a base extension. The numbering of the channels will depend on its configuration

slot.

How to Configure Analog Input Channels

The following table describes the procedure for configuring the analog channels of
the expansion module:

Step

Action

1

Select Describe step from the TwidoSuite interface.
See .

Display the product catalog and select a module to add to the system
description.

For example, TWDALMB3LT for measuring temperature using a PT100 or
Thermocouple.

Add the module to the system description (see .)

Use the Configuration Editor to set parameters of analog I/O modules that you
added as expansion modules when you described the system.

In the Type column, select the input type corresponding to the type of sensor
used (ThermoCouple K, if the sensor is of this type).

In the Range column, select the measurement unit for the sensor. For
temperature sensors it is easier to select Celsius, as this makes the number
of counts sent back by the analog card a direct factor of the real measurement.

593

35011386 05/2009



Advanced Instructions

Step Action
7 Provide an address for the input symbol of the configured analog card. It will
be used to complete the PID fields (%IW1.0, for this example).
8 Do the same for an analog output if an output must be used to drive the control
system.

Example of Analog Channel Configuration

Several types of configuration are possible depending on the type of measurement

used, as indicated below:

e Forthe application in the example used in this document, we have chosen a Type
K ThermoCouple (0-200°). The process value read will be directly
comprehensible (2000 counts = 200° as the unit factor is 0.1).

e For other types of measurement, you choose 0-10V or 4-20 mA in the Type

column, or Custom in the Range column. Then adjust the value scale (enter 0 in
the Minimum column and 10000 in the Maximum column) to be able to read the
process value directly (10 V = 10000 counts).

The example below shows a configuration for a ThermoCouple K analog channel:

Description of the module Reference num TWDALMILT Address |2
Description Expansion module with 2 analog inputs (RTD ﬂ
- Thy and 1 output (0- 10V, 4 - 20ma),
12 bits, removable screwterminal. W, J |
Module configuration. :l :l
1/0 Table
Used Address Symbol Type Seope Minimum Maxim um Units
] wlWa.0 Mot in use Normal Q 1095 Mone
(| Fe W24 Mot in use MNormal 0 4095 MNone
[ =wewzo Mot in use Normal 0 4098 None
KT

.

Bleeleds

35011386 05/2009

594



Advanced Instructions

Step 2 - Prerequisites for PID Configuration

Introduction
Before configuring the PID, ensure that the following phases have been performed:

Phase Description
1 PID enabled in the program.
2 Scan period configured

Enabling PID in the Program

The PID controller must be enabled in the program by an instruction. This instruction
can be permanent or be a condition of an input or internal bit. In the following
example, the PID is enabled by the instruction %M0:

e |n Ladder:

Enfer your commerts here. Enter your comments here.

@ LD SECTION TITLE Enter your comments here. Entsr your comments here.

Enfer your commerts here. Enter your comments here:
Rung 1

Eniter your commerts here. Enter your comments here.

FIDO

%0 I
|1 |

e In Instruction List:

0 LD sMO
1 [ PID 0 ]

NOTE: Ensure that you use correct syntax:

Check that there is a space between "PID" and the PID number (e.g.
PID<space>0).

595 35011386 05/2009



Advanced Instructions

Configuration of Scan Period

When using PID controllers, you are strongly advised to configure the scan mode of
the PLC cycle to periodic. The table below describes the procedure for configuring
the scan mode. In this mode, the %s19=1 (scan period overrun) shows that the PLC
scan time is greater than the period defined by the user.

Step

Action

1

Use the Program — Configure — Configure the Behavior task to configure the

controller Scan Mode settings.

Check the Periodic box.

Set the cycle time as shown in the screen below:

Configure the Behavior

& Automatic Automatic management
© Manual t* The Highest possible
" The Lowest possible
Manual management
=
|
E
Scan Mode C Norrnal
((_3 Period ¢ _)
Watchdog
Period (10-500 ms) 250 ms
Periodic Event
W Notused
ms
Startup ™ Automatic startin Fun
Run / Stop Input: None =
Autosave ™ Autornatic RAM=>EEPROM
Apply___| Restore |

Note: The cycle time should be adjusted to the size of the program and desired
performance. (A time of 50ms is a good compromise).

35011386 05/2009

596




Advanced Instructions

Step 3 — Configuring the PID

Introduction

For this example, we have chosen to implement the majority of PID controller
functions for Twido. Some selections are not essential and can be simplified.

Auto-Tuning (AT)

The PID controller has an Auto-Tuning function that simplifies the regulation loop
setting (this function is referred to as AT in the rest of the document).

Operating Modes

The Twido PID controller offers four distinct operating modes, configurable in the

General tab in the PID dialog box:

e PID = Simple PID controller.

e AT + PID = The Auto-Tuning function is active when the PID starts up and
automatically enters the gain values Kp, Ti, Td (PID tab) and the type of PID
action (Output tab). At the end of the Auto-Tuning, sequence, the controller
switches to PID mode for the adjusted setpoint, and using the parameters set by
AT.

e AT =The Auto-Tuning function is active when the PID starts up and automatically
enters the gain values Kp, Ti, Td (PID tab) and the type of PID action (Output
tab). At the end of the sequence the PID stops and waits. The gain values Kp, Ti,
Td (PID tab) and the type of PID action (Output tab) are entered.

e Word address = The selection of PID operating mode can be controlled by the
program by assigning the desired value to the word address associated to this
selection:

o %MWxx=1: The controller operates in simple PID mode.
o %MWxx=2: The controller operates in AT + PID.

o %MWxx=3: The controller operates in AT mode only.

o %MWxx=4: The controller operates in Pl mode only.

This type of configuration via the word address enables the user to manage the
PID controller operating mode via the application program, thus making it
possible to adapt to the final requirements.

NOTE: PI regulation can be selected from the PID tab.

597 35011386 05/2009



Advanced Instructions

Launching the PID Dialog Box

The table below shows the PID dialog box and the procedure for accessing the
different PID settings configuration tabs:

Step Action

1 Select the Program — Configure — Configure the Data task on the
TwidoSuite interface.
Result: The default software configuration window appears.

2 Select Advanced Objects from the Object Category frame and choose PID)
from the Objects Type frame.

Select the desired PID# from the PID table.

The PID dialog box appears in the foreground and is used to enter the different
controller settings as shown in the figure below. In offline mode, this displays
several tabs: General, Input, PID, AT, Output:

Général Input ‘ PID | AT ‘ OQutput Animation

Apply | Cancel ‘

Operating mode: AT+PID v

W PID States
Word address:

PID Qutput
+
Setpoint ‘(%PIDcontruller il |~ A | /\r»l_ |

Input

v L]

E

AT

PV B
'7”
Limit

Important: The tabs must be entered in the order in which they appear in the
PID dialog box: first General, Input, PID, AT then Output.

Note: In online mode, this screen displays two more tabs, Animation and
Trace, used respectively for the diagnostics and display of the controller
operation.

35011386 05/2009 598



Advanced Instructions

Dynamic Modification of Parameters

For the dynamic modification of the PID parameters (in operation and in online
mode), it is advised to enter the memory addresses in the associated fields, thus
avoiding switching to offline mode to make on-the-fly changes to values.

General Tab Setting
The following table shows how to set the General tab in the PID dialog box:

Step Action
1 In the General tab, check the Configured box to activate the PID and set the
following tabs.
2 In the Operating mode drop-down list, select the type of operation desired
(see page 597).

In the example: We will select the Memory address mode and enter the word
%MW17 in the associated field. The PID operating mode will then be linked to
the value in %sMW17.

Input Tab Setting
The following table shows how to set the Input tab in the PID dialog box:

Step Action

1 In the Input tab, enter the analog channel used as a measurement in the
associated field.

In the example: We have chosen %IW1.0 as this is used as a temperature
measurement.

2 Where necessary, set alarms on the low and high measurement thresholds by
checking the boxes and filling in the associated fields.

Note: The values entered may be fixed values (entered in the associated
fields) or modifiable values (by filling in the fields associated with the memory
addresses: %MWxx).

599 35011386 05/2009



Advanced Instructions

PID Tab Setting

The following table shows how to set the PID tab in the PID dialog box:

Step

Action

1

In the PID tab, enter the value to be used to set the controller setpoint. In general,
this value is a memory address or setpoint of an analog input.
In the example: We have entered %MWO, which will be used as a setpoint word.

The Corrector type can be selected only if the PID operating mode has been
previously chosen in the General tab.

In the example: the Corrector type is set to automatic and disabled.

Note: If you have previously chosen PID as your operating mode, you can select
the desired corrector type (PID or PI) from the drop-down list. If Plis selected the
Td parameter is forced to zero and this field is disabled.

Set the Kp, Ti, Td parameters.

Important: If the AT or AT+PID mode is selected, it is essential that the Kp, Tiand
Td fields be completed with memory addresses, to enable the Auto-Tuning
function to automatically fill in the values found.

In the example: We have entered %MW10 for Kp, %MW11 for Ti and %MW12
for Td.

Note: In principle, it is rather difficult to determine the optimal adjustment values
of Kp, Ti and Td for an application that has not yet been created. Consequently,
we strongly recommend you enter the memory words addresses in these fields, in
order to enter these values in online mode thus avoiding switching to offline mode
to make on-the-fly changes to values.

Enter the PID Sampling period. This value is used by the controller to acquire
measurements and update outputs.

In the example: We have set the PID sampling period to 100, or 1s. Given that
the adjusted system has a time constant of several minutes, this sampling period
value seems correct.

Important: We advise you set the sampling period to a multiple of the controller
scan period, and a value consistent with the adjusted system.

35011386 05/2009

600




Advanced Instructions

Tab Setting for AT

Output Tab Setting

The following table shows how to set the AT tab in the PID dialog box:

Step Action
1 In the AT tab, check the Authorize box if you want to use AT.
2 Enter the Measurement limit value. This is the limit value that the

measurement must not exceed during AT.

3 Enter the Output setpoint value which is the controller output value sent to
generate AT.
Special For further details about setting these values refer to the AT Tab of PID
Note Function, page 638 section.
Advice We strongly recommend you enter the memory words addresses in these

fields, in order to enter these values in online mode thus avoiding switching to
offline mode to make on-the-fly changes to values.

The following table shows how to set the Output tab in the PID dialog box:

A WARNING

RISK OF SYSTEM OVERLOAD

You are reminded that manual mode has a direct effect on the controller output.
Consequently, sending a manual setpoint (Output field) acts directly on the open
controlled system. You should therefore proceed with care in this operating mode.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

A WARNING

UNEXPECTED EQUIPMENT OPERATION

Do not use relay output with PID as this may result in the number of permitted
operations for relays being exceeded and the relay destroyed. Depending on the
process being controlled, this can have hazardous consequences.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

601

35011386 05/2009




Advanced Instructions

Step Action

1 In the Output tab, enter the selection from the Action drop-down list.

This selection depends on the configured system:

e Direct action: the controller output decreases as the variation value
(setpoint - measurement) increases (cold controller).

e |Inverse action: Direct action: the controller output decreases as the
variation value (setpoint - measurement) increases (hot controller).

Important: When using the AT function, this list automatically selects Bit
address. The operating mode is determined by the AT function, and in this
case entered in the bit associated with this field.

2 Where necessary, enter the threshold values of the controller output in the
Alarms field. This function may be necessary in certain applications for
managing process alarms where thresholds are exceeded.

3 Set the Manual mode operating mode.

The drop-down list offers several choices:

® Inhibit = no manual mode.

e Authorize = the controller operates in manual mode only.

e Bitaddress = the value of the bit is used to change the operation of manual
mode (bit set to 0 = automatic mode, bit set to 1 = manual mode).

In the example: Here we select %M2 to activate the choice, and %MW18 to
adjust the value of the manual setpoint.

Use the manual mode to make trials to determine the min/max output
limitation, or most accurate AT output setpoint.

4 Adjust the Discrete output word. This word is used by the controller to send
the control setpoint. It can be sent directly to an analog output channel (%QW..)
or to a memory word (%MWHxx) for additional processing.

Important: When using the PWM function, enter a memory address (%MWxx)
in this field.

5 Set the PWM output if required by the system:

1. Check the Authorize box if you intend to control the system via a PWM
actuator.

2. Enter the PWM control Period in the associated field.

3. Enter the Output used to control the PWM actuator. We recommend you
use the base controller transistor outputs for this function (for example,
%Q0.0 or %Q0.1 for the TWDLMDA20DRT base controller).

6 Confirm the controller configuration by clicking OK in the bottom left of the
screen.

7 To configure several PID controllers, click Next to increment the number of the
PID to be set.

35011386 05/2009 602



Advanced Instructions

Step 4 - Initialization of Control Set-Up

Prerequisites for Set-Up
Before set-up, you must follow the steps below:

Step Action
1 Connect the PC to the controller and transfer the application.
2 Switch the controller to RUN mode.

NOTE: Before switching the controller to RUN mode, check that the machine’s
operating conditions allow this for the rest of the application.

603 35011386 05/2009



Advanced Instructions

Procedure

The steps below must be followed to initialize control set-up:

Step

Action

1

Create an animation table containing the main objects needed for diagnostics.
In the example:

%MWO: loop controller setpoint,

%IW1.0: measurement,

%MO0: enabling of loop controller,

%M1: loop controller action type (set by the AT function),

%M2: selection of Automatic or Manual mode,

%MW10 to %MW12: PID loop controller coefficients,

%MW 13: measurement limit not to be exceeded in AT mode,
%MW 14: loop controller output setpoint in AT mode,

%MW 15: discrete output of the PID loop controller (entered by the controller),
%MW16: setting of the PWM period,

%MW17: operating mode selection for the PID controller,

%MW 18: manual setpoint associated with the %M2 bit selection.

Check the consistency of the value measured in the %IW1.0 field.
In the example:

1.
2.

. If you have any doubt about the accuracy of the measurement, set the controller

A measurement of 248 counts is obtained when the system stable and cold.
This seems consistent, as we have a multiplication coefficient of 10 between the
temperature and the value read. We can also influence the measurement
externally to make sure the reading is consistent (increase the temperature
around the probe to check the measurement also increases).

Note: This test is quite important, as the operation of the controller depends
essentially on the accuracy of the measurement.

to STOP mode and check the wiring to the inputs of the analog card (voltmeter

or ammeter for inputs 0-10V / 4-20mA, ohmmeter for the PT100 (100 ohms at

20°) or Thermocouple (a few tens of ohms):

e First disconnect the probe from the analog card terminals.

® Check there is no wiring reversal (the colors of the wires connected to the
inputs, compensation cable for the PT100).
Important: INO and IN1 input channels have a shared potential at the
terminals (-).

® Check that the analog card is powered by a 24 VDC supply to the first two
terminals.

® Check that the 4-20 mA input sensors are supplied. The Twido analog input
cards are not a source of current.

35011386 05/2009

604



Advanced Instructions

Step | Action

3 | To power up the loop controller, start by controlling the PID controller in Manual
mode in order to increase the limit values needed by the AT function.
To set the controller to Manual mode:
1. Switch the controller to RUN mode.
2. Enter the memory addresses with the following values in the animation table:
® %M2: Manual mode selection = 1,
(M2=1 => Manual Mode, M2=0 => Automatic Mode),
® %MW16: PWM period setting = 10,
® %MW17: Operating mode selection for the PID controller = 1 (PID only),
® %MW18: Manual setpoint associated with the %M2 bit selection = 1000.
This setpoint value can be selected several times, on condition that the
system be left to return to its initial state.
In the example: We have selected the value 1000, which corresponds to an
average temperature increase value (for information, 2000 counts = 200°).
When cold, the system starts at a value of 250 counts.

4 | Check that the controller is RUN mode.
(%M0: controller validation = 1, to be entered in the animation table.)

5 | Select Advanced Objects from the Object Category frame and choose PID) from
the Objects Type frame.
Select the desired PID# from the PID table.

605 35011386 05/2009



Advanced Instructions

Step | Action

6 | Activate the Animation tab for the required PID number and check that the
animation matches the screen below:

Général ‘ Input ‘ PID ‘ AT ‘ Output ‘ Animation

Apply ‘ Cancel |
Operating mode List of PID states
PID | 8/29/2005 11:36 AM PID Stop v
PID Qutput Period

Ts

Setpoint

PID controller
Kp Ti Td Rev /\A MI_.

oo o [C [0

Qutput

Note: The screens of the PID controller are only refreshed if the controller is
enabled (and API set to RUN).

7 | Activate the Trace tab for the required PID number, then:

1. Set the time elapse drop-down list to 15 min to see a trace of the measurement
signal’s progress.

2. Check that the measurement value remains within the acceptable values for the
system. The increase in the measurement can be checked in the Trace tab.
When this has stabilized, read the value corresponding to the stabilization of the
measurement graph (for example, 350 counts corresponding to 35°, or an
increase of 10° compared with the initial state).

35011386 05/2009 606



Advanced Instructions

Step | Action

8 | Set the time elapse scroll list to 15min to see a trace of the measurement signal’s
progress.

Check that the measurement value remains within the acceptable values for the
system. We can view the increase in the measurement from the Trace tab. When
this has stabilized, read the value corresponding to the stabilization of the
measurement graph (for example, 350 counts corresponding to 35°, or an increase
of 10° compared with the initial state).

9 | If we see that the actuator is not controlled, check the output circuit:
® For an analog output, check the output voltage or current from the analog card.
o For a PWM output, check:
o the LED of the output concerned is lit (%Q0.1, in this example),
o the wiring of the supplies and 0V circuit for the TWDLMDA20DRT base
outputs,
o the actuator power supply.

10 | Close the PID display screen and stop the manual mode by entering the following
values in the animation table:

® %MO: Enable loop controller = 0 (stop the loop controller)

® %M2: Selection of Automatic or Manual mode = 0 (stop manual mode)

® %MW17: Operating mode selection for the PID controller = 0

® %MW18: Manual setpoint associated with %M2 bit selection = 0.

607 35011386 05/2009



Advanced Instructions

Step 5 - Control Set-Up AT + PID

Introduction
In this section, we will be looking at how to configure the controller to start operation
in AT+PID. mode. In this operating mode, the controller will automatically adjust the
controller to coefficients Kp, Ti, Td.
NOTE: During the sequence, the system should not be subject to any disturbance
due to external variations that would affect the final adjustments. Also, before
launching the AT sequence, make sure the system is stabilized.

Reminder of Kp, Ti and Td Settings
For operation in AT+PID mode to be possible, the following two conditions must be
met:
e The Kp, Ti, Td coefficients must be configured as memory addresses
(%MWxx).
e The Action type in the Output tab must be set to a memory bit address
(%Mxx).

35011386 05/2009 608



Advanced Instructions

To set the controller to AT+PIDmode, proceed as follows:

Step | Action

1 | Enter or check the memory addresses with the following values in the animation

table:

® %M2: selection of Automatic or Manual mode = 0,

® %MWO: loop controller setpoint = 600 (in this example, the setpoint is active
after the AT sequence and the controller maintains a temperature of 60°),

® %MW10 to %MW12: coefficients of the PID controller (leave at 0, the AT
sequence will fill them in),

® %MW13: measurement limit not to be exceeded in AT mode = 900 (in the
example, if 90° is exceeded an error will occur inAT),

® %MW14: controller output setpoint in AT mode = 2000 (from the test in manual
mode).
This is the step change value applied to the process. In AT mode, the output
setpoint is directly applied at the controller output.
This value can be an internal word (%MWO to %MW2999), an internal constant
(%KWO to %KW255) or a direct value. The value must therefore be between 0
and 10,000.
Note: The output autotuning setpoint must always be greater than the last
output applied to the process.

® %MW15: discrete output of the PID loop controller (entered by the controller),

® %MW16: PWM period setting (leave 10, as set previously),

® %MW17: operating mode selection for the PID controller = 2 (AT + PID),

® %MW18: manual setpoint associated with the %M2 bit selection = 0.

Configure the Twido controller so that it scans in Periodic mode.

Set the Time of the Twido controller scanning period so that the Sampling period
(Ts) value of the PID controller is an exact multiple.

Note: For further details on how to determine the sampling period, see Auto-Tuning
Requirements, page 657 and Methods for Determining the Sampling Period (Ts),
page 658.

4 | Check that the controller is RUN mode.

Enter the memory bit %M0.
%MO: controller validation = 1 in the animation table.

6 | Select Advanced Objects from the Object Category frame and choose PID) from
the Objects Type frame.
Select the desired PID# from the PID table.

609 35011386 05/2009



Advanced Instructions

Step | Action

7 | Activate the Animation tab for the required PID number and check that the
animation matches the screen below:

Geéneéral ‘ Input ‘ PID ‘ AT ‘ Output ‘ Animation

Apply | Cancel |
Operating mode List of PID states
AT+PID | v
Output Period

Ts

Setpoint P:(E:)contrqll_lier Ta Rev [\/\ PMI—.
0 |u |0 |0 0 0

Input

3
(=}
+
|

Mes

1

Output setpoint

PV 0 —
Limit [ reate an
AT animation table

Note: The screens of the PID controller are only refreshed if the controller is
enabled (and API set to RUN).

8 | Click on Trace button and wait for the system to startAT.

Trace

Note: The waiting time may last for 10-20 minutes before the AT procedure
changes.

i

35011386 05/2009 610



Advanced Instructions

Storage of Calculated Kp, Ti and Td Coefficients

Repetition of AT

Once the Auto-Tuning sequence is complete, the memory words assigned to the Kp,
Ti and Td coefficients are completed with the calculated values. These values are
written to the RAM memory and saved in the controller as long as the application is
valid (power-down of less than 30 days) and no cold-start is performed (%S0).

NOTE: If the system is not influenced by outside fluctuations, the values may be
hard written in the settings of the PID controller and the controller switched to PID
mode only.

The Auto-Tuning sequence is repeated on every switch to RUN or cold start (%S0).

You should therefore test the diagnostics words using the program what to do in the
event of a restart.

611

35011386 05/2009



Advanced Instructions

Step 6 - Debugging Adjustments

Accessing the Animation Table
To make it easier to debug the system, the animation table can be accessed at any
time when the PID controller screens are in the foreground.
NOTE:
When viewing only the setpoint and process value graphs using the Detach button

in the Trace tab (see Trace tab window below), the animation table can then be
accessed via Program — Debug — Animate the program task.

PIDO

15 min v

Initialze

Export

Screen data can be exported into Excel format by clicking on the Export button. This
opens a dialog box in which you can specify the name and location of an .cvsfile. In
this dialog box click Save to export the data or Cancel to abandon export.

35011386 05/2009 612



Advanced Instructions

Returning to PID Screens

To return to the PID controller screens without losing the graph trace history,
proceed as follows:

Step

Action

1

Select Advanced Objects from the Object Category frame and choose PID)
from the Objects Type frame.
Select the desired PID# from the PID table.

Click the Animation tab.

History of PID States

In the Animation tab for the PID controllers, you can access the last 15 states of the
current controller by making your selection from the drop-down list as shown below:

General ‘ Input ‘ PID ‘ AT ‘ Qutput ‘ Animation

NOTE

Apply | Cancel |
Operating mode List of PID states
| PID | 12/04/2004 17:35 The PID sstpointis reached v

12/04i2004 17:29 The PID control is in progress

12/04/2004 17:29 Autotuning process finished
12/04/2004 1720 Phase 4 autoluning in progress
12/04/2004 1715 Phase 3 autotuning in progress

12/04/2004 1710 Phase 2 autotuning in progress

12/04/2004 17.02 Phase 1 autoluning in progress

: The PID states are stored when the PC and TwidoSuite are in online mode.

613

35011386 05/2009



Advanced Instructi

ons

18.4

PID Function

Aim of this Section

This section describes the behavior, functionalities and implementation of the PID

function.

NOTE: To find out quick setup information about your PID controller as well as the
PID autotuning, please refer to the Twido PID Quick Start Guide, page 590.

What's in this Section?

This section contains the following topics:

Topic Page
Overview 615
Principal of the Regulation Loop 616
Development Methodology of a Regulation Application 617
Compatibilities and Performances 618
Detailed Characteristics of the PID Function 619
How to Access the PID Configuration 624
PID Screen Elements of PID Function 625
General Tab of PID function 630
Input Tab of the PID 633
PID Tab of PID function 635
AT Tab of PID Function 638
Output Tab of the PID 644
How to Access PID Debugging 647
Animation Tab of PID Function 648
Trace Screen of PID Function 651
PID States and Error Codes 653
PID Tuning with Auto-Tuning (AT) 657
PID Parameter Adjustment Method 665
Role and Influence of PID Parameters 668
Appendix 1: PID Theory Fundamentals 672
Appendix 2: First-Order with Time Delay Model 674
35011386 05/2009 614




Advanced Instructions

Overview

General

Key Features

The PID regulation function is a TwidoSuite programming language function.
This function is particularly adapted to:

e Answering the needs of the sequential process which need the auxiliary
adjustment functions (examples: plastic film packaging machine, finishing
treatment machine, presses, etc.)

e Responding to the needs of the simple adjustment process (examples: metal
furnaces, ceramic furnaces, small refrigerating groups, etc.)

It is very easy to install as it is carried out in the:

e Configuration
e and Debug

screens associated with a program line (operation block in Ladder Language or by
simply calling the PID in Instruction List) indicating the number of the PID used.

The correct syntax when writing a PID instruction is: PID<space>n, when n is the
PID number.

Example of a program line in Ladder Language:

@LD

PID

Rung 1
# PID O

SHORT PID O

NOTE: In any given Twido automation application, the maximum number of
configurable PID functions is 14.

The key features are as follows:

Analog input,

Linear conversion of the configurable measurement,
High or low configurable input alarm,

Analog or PWM output,

Cut off for the configurable output,

Configurable direct or inverse action.

615

35011386 05/2009



Advanced Instructions

Principal of the Regulation Loop

At a Glance

lllustration

The working of a regulation loop has three distinct phases:

e The acquisition of data:
e Measurements from the process’ sensors (analog, encoders)
e Setpoint(s) generally from the controller's internal variables or from data from
a TwidoSuite animation table

e Execution of the PID regulation algorithm
e The sending of orders adapted to the characteristics of the actuators to be driven
via the discrete (PWM) or analog outputs

The PID algorithm generates the command signal from:

e The measurement sampled by the input module
e The setpoint value fixed by either the operator or the program
e The values of the different corrector parameters

The signal from the corrector is either directly handled by a controller analog output
card linked to the actuator, or handled via a PWM adjustment on a discrete output
of the controller.

The following diagram schematizes the principal of a regulation loop.

Animation Table Running
TwidoSuite

P

Corrector Adapter

INPUTS

OUTPUTS

PLC

MEASURE L
.
ORDER

Process to order

SENSORS

ACTUATORS

35011386 05/2009

616



Advanced Instructions

Development Methodology of a Regulation Application

Diagram of the Principal

The following diagram describes all of the tasks to be carried out during the creation
and debugging of a regulation application.

Note: The order defined depends upon your own work methods, and is provided as

an example.

PID Application / Configuration
Configuration of
Discrete, Analog interfaces

v

Application / Dala
Input of constant and
mnhemonic data, and

numerical values

Y

Programming: Ladder, List
Regulation functions,
Operator dialogue

v

AP! /Connector
Transfer of the application

in the PLG
|
Y v ¥
Animation tables Debugging Debugging
Variable table program PC
and adjustment

v

Y

'

File / Save
Storing the
application

Operation
of control
loops

Operation of the
process via PG

l

Documentalion
Application
folder

617

35011386 05/2009



Advanced Instructions

Compatibilities and Performances

At a Glance

Compatibility

Performance

The Twido PID function is a function that is available for controllers compatible with
Twido version 2.0 or higher, which is why its installation is subject to a number of
hardware and software compatibilities described in the following paragraphs.

In addition, this function requires the resources presented in the Performances
paragraph.

The Twido PID function is available on Twido controllers version 2.0 or higher
software.

If you have Twidos with an earlier version of the software, you can update your
firmware in order to use this PID function.

NOTE: The version 1.0 analog input/output modules can be used as PID
input/output modules without needing to be updated.

In order to configure and program a PID on these different hardware versions, you
must have the TwidoSuite software.

The PID regulation loops have the following performances:

Description Time

Loop execution time | 0.4 ms

35011386 05/2009

618



Advanced Instructions

Detailed Characteristics of the PID Function

General

The PID function completes a PID correction via an analog measurement and
setpoint in the default [0-10000] format and provides an analog command in the
same format or a Pulse Width Modulation (PWM) on a discrete output.

All the PID parameters are explained in the windows used to configure them. Here,
we will simply summarize the functions available, indicate measurement values and
describe how they integrate into PID in a functional flow diagram.

NOTE: For use at full scale (best resolution), you can configure your analog input
connected to the PID's measurement branch in 0-10000 format. However, if you use
the default configuration (0-4095), the controller will function correctly.

NOTE: In order for regulation to operate correctly, it is essential that the Twido PLC
is in periodic mode. The PID function is then executed periodically on each cycle,
and the PID input data sampling complies with the period set in configuration (see

table below).

Details of Available Functions

The following table indicates the different functions available and their scale:

Function

Scale and comment

Linear conversion of input

Allows you to convert a value in 0 to 10000 format
(analog input module resolution) to a value between
32768 and 32767

Proportional gain

Using a factor of 100, its value is between 1 and 10000.
This corresponds to a gain value varying between 0.01
and 100.

Note: If you enter an invalid value of gain (negative or
null gain), TwidoSuite ignores this user-setting and
automatically assigns the default value of 100 to this
factor.

Integral time

Using a timebase of 0.1 seconds, its value is between 0
and 20000. This corresponds to an integral time of
between 0 and 2000.0 seconds.

Derivative time

Using a timebase of 0.1 seconds, its value is between 0
and 10000. This corresponds to a derivative time of
between 0 and 1000.0 seconds.

Sampling period

Using a timebase of 0.01 seconds, its value is between
1 and 10000. This corresponds to a sampling period of
between 0.01 and 100 seconds.

619

35011386 05/2009



Advanced Instructions

Function

Scale and comment

PWM output

Using a timebase of 0.1 seconds, its value is between 1
and 500. This corresponds to a modulation period of
between 0.1 and 50 seconds. PWM precision depends
both pwm period and scan period. The precision is
improved when PWM.R has greatest number of values.
For instance with scan period = 20ms and PWM period
=200ms, PWM.R can take values 0%, 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90%, 100%. With scan
period = 50ms and PWM period = 200ms, PWM.R can
take values 0%, 25%, 50%, 75% and 100% of the
periode PWM.P.

Example : case of PWMR = 75%

_U
=
=

T T T - 7’
(ms)

Ts = Scan Period

¥
. PWMP | Ton = sum of Ts

Analog output

Value between 0 and +10000

High level alarm on process
variable

This alarm is set after conversion. It is set to a value
between -32768 and 32767 if conversion is activated
and to 0 and 10000 if it is not.

Low level alarm on process
variable

This alarm is set after conversion. It is set to a value
between -32768 and 32767 if conversion is activated
and to 0 and 10000 if it is not.

High limit value on output

This limit value is between 0 and 10000 for an analog
output value. When PWM is active, the limit corresponds
to a percentage of the modulated period. 0% for 0 and
100% for 10000.

Low limit value on output

This limit value is between 0 and 10000 for an analog
output value. When PWM is active, the limit corresponds
to a percentage of the modulated period. 0% for 0 and
100% for 10000.

Manual mode

When manual mode is active the output is assigned a
fixed value set by the user. This output value is
between 0 and 10000 (0 to 100% for PWM output).
Use the manual mode to make trials to determine the
min/max output limitation, or most accurate AT
output setpoint.

35011386 05/2009

620



Advanced Instructions

Function

Scale and comment

Direct or inverse action

Direct or inverse is available and acts directly on the
output.

Auto-Tuning (AT)

This function provides automatic tuning of the Kp, Ti, Td
and Direct/Reverse Action parameters to achieve
refined convergence of the PID function.

NOTE: For a more in-depth explanation of how each of the functions described in
the above table works, refer to the diagram below.

621

35011386 05/2009



Advanced Instructions

Operating Principles

F—— = = — — —

| Sampling period

| PID CORRECTOR

| TI

|

| _ .
SET POINT The Setpoint branch Integrate

| + Deviat +
_—_——— - - KP
SET POINT - 2
SP | +

TD

| The Measurement branch d_

| dt

| Dernved
MEASURE High alarm
—-5)— Conversion The PID action
PROCESS | MEASUREMENT
VALUE Low alarm USED
PV |

|

The PID operation modes
|
High limit

| 4 1 auTo

|

|

|

|

|

|

The following diagram presents the operating principle of the PID function.

o Limiter -

Analog output

Low limil 0 |
PWM e
|
Modulation
period |
|
Lo g i
OPERATOR DIALOGUE
TwidoSuite PG
35011386 05/2009 622



Advanced Instructions

NOTE: In ONLINE mode, when the PLC is in periodic task, the value displayed in
the Ts Field (in the PID software configuration screen) can be different with the
parameter entered (%MW). The Ts value is a multiple of the periodic task, whereas
the %MW value is the value read by the PLC.

NOTE: The parameters used are described in the table on the page above and in
the configuration screens.

623 35011386 05/2009



Advanced Instructions

How to Access the PID Configuration

At a Glance

Procedure

The following paragraphs describe how to access the PID configuration screens on
Twido controllers.

The following table describes the procedure for accessing the PID configuration

screens:
Step Action
1 Check that you are in offline mode.
2 Select Advanced Objects from the Object Category frame and choose PID
from the Objects Type frame.
3 Select the desired PID# from the PID table. (see page 626)

Result: The PID configuration window opens and displays the General
(see page 630) tab by default.

35011386 05/2009

624



Advanced Instructions

PID Screen Elements of PID Function

At a Glance

The PID configuration window permits to:
e Configure each TWIDO PID (in offline mode),
e Debug each TWIDO PID (in online mode).

This section describes the PID Screen Elements, including:
Access to the PID Configuration Screen,

e PID Selection Table of the PID Function,

e PID Tabs of the PID Function,

e PID Trace.

Access to the PID Configuration Screen
To access the PID configuration window:

If... Then ... Outcome

Youarein | SelectProgram — Debug— Monitor | You will go to the Animation tab and will
online software configuration —» Advanced | have access to the debugging and
mode. objects — PID. adjustment parameters.

Youarein | Select Program — Configure — You will go to the General tab by default
offline Configure the datas —» Advanced |and will have access to the configuration
mode. objects — PID. parameters.

625 35011386 05/2009



Advanced Instructions

PID Selection Table of the PID Function
The table below is used to select the PID you wish to Configure/Debug.

All v

Used Address Configured
PID O

PID 1

PID 2

PID 3

FID 4

PID 5

PID 6

PID 7

PID &

PID 9

PID 10

PID 11

PID 12

HEE S E S EEEE S E
BN NN AN RN

PID 13

The table below describes the settings that you may define.

Field Description

Address Specify the PID number that you wish to configure here.
The value is between 0 and 13, 14 PID maximum per application.

Configured To configure the PID, this box must be checked. Otherwise no action can
be performed in these screens and the PID, though it exists in the
application, cannot be used.

Note: You must first complete the current PID configuration before switching
to another PID or performing any another software task.

35011386 05/2009 626



Advanced Instructions

Field Description

Used Read only, this box is checked if the PID with corresponding number is
used in the application program

Sort option box | Select the corresponding sort option according to whether you wish to
display All, or only Used or Unused PID in the PID selection table.

Note: You must first complete the current PID configuration before switching
to another PID or performing any another software task.

PID Tabs of the PID Function

The PID tabs allow you to to configure the PID parameters. The screen below shows
the tabs of The PID.

Général Input ‘ PID | AT ‘ Output ‘ Animation |

Apply | Cancel ‘

Operating mode: AT+PID v

" PID States

PID Qutput
+
Setpoint % PID controller Dl |~- _/_| f\)"- |— |

Input

B ]

AT

PV
AT
Limit

627 35011386 05/2009



Advanced Instructions

The table below describes the tabs of the PID.

Field Description

General Tab Specify the PID General parameters, see General Tab of PID function,
page 630

Input Tab Specify the PID Input parameters, see Input Tab of the PID, page 633

PID Tab Specify the PID internal parameters, see PID Tab of PID function,
page 635

AT Tab Specify the AT parameters, see AT Tab of PID Function, page 638

Output Tab Specify the PID Output parameters, see Output Tab of the PID,
page 644

Animation Tab | View/Debug the PID, see Animation Tab of PID Function, page 648

NOTE: In some cases, some tabs and fields may not be accessible for either of the
two following reasons:

e The operating mode (offline or online) which is currently active does not allow you
to access these parameters.

e The "PID only" operating mode is selected, which prevents access to the AT tab
parameters that are no longer needed.

35011386 05/2009 628



Advanced Instructions

PIDTrace of the PID Function

The PID trace button ¢ allows you to view the PID control.

Initialize

Measure

Export

This tab allows you to view PID operation and to make adjustments to the way it
behaves, see Trace Screen of PID Function, page 651.

629 35011386 05/2009



Advanced Instructions

General Tab of PID function

At a Glance

Select Advanced Objects from the Object Category frame and choose PID from the
Objects Type frame.

Select the desired PID# from the PID table.
The PID configuration window allows you to:

e configure each TWIDO PID (in online mode),
e debug each TWIDO PID (in offline mode),

When you open this screen, if you are:

e in offline mode: the General tab is displayed by default and you have access to
the configuration parameters,

e in online mode: the Animation tab is displayed and you have access to the
debugging and adjustment parameters.

NOTE: In some cases, some tabs and fields may not be accessible for either of the
following reasons:

e The operating mode (offline or online) which is currently active does not allow you
to access these parameters.

e The "PID only" operating mode is selected, which prevents access to the AT tab
parameters that are no longer needed.

The following paragraphs describe the General tab.

35011386 05/2009

630



Advanced Instructions

General Tab of the PID Function

The screen below is used to enter the general PID parameters.

— A
Eenera Input PID | AT | Output ‘ Animation

Apply | Cancel ‘

Operating mode:

Word address:

AT+PID A 4

I

[ PID States

PID controller

631

35011386 05/2009



Advanced Instructions

Description

The table below describes the settings that you may define.

Field

Description

PID number

Specify the PID number that you wish to configure here.
The value is between 0 and 13, 14 PID maximum per application.

Configured

To configure the PID, this box must be checked. Otherwise no action can
be performed in these screens and the PID, though it exists in the
application, cannot be used.

Operating mode

Specify the desired operating mode here. You may choose from three
operating modes and a word address, as follows:

e PID

e AT

e AT+PID

e Word address

Word address

You may provide an internal word in this text box (%MWO to %MW2999)
that is used to programmatically set the operating mode. The internal
word can take four possible values depending on the operating mode
you wish to set:

® %MWx =1 (to set PID only)

® %MWx = 2 (to set AT + PID)

® %MWx = 3 (to set AT only)

® %MWx = 4 (to set Pl only)

PID States

If you check to enable this option, you may provide a memory word in
this text box (%MWO to %MW2999) that is used by the PID controller to
store the current PID state while running the PID controller and/or the
autotuning function (for more details, please refer to PID States and
Error Codes, page 653.)

Diagram

The diagram allows you to view the different possibilities available for
configuring your PID.

NOTE: Make sure to use the autotuning only when no other PID are running, the
influence of the others PID produces a but calculus of the constant Kp, Ti, Td.

35011386 05/2009

632




Advanced Instructions

Input Tab of the PID

At a Glance
The tab is used to enter the PID input parameters.
NOTE: It is accessible in offline mode.

Input tab of the PID Function
The screen below is used to enter the PID input parameters.

[
%enera Input PID AT ’ Qutput Animation

Apply ‘ Cancel ‘
Measure Conversion Alarms
[ Authorize ["] Authorize
Min Low: Output:
Max High: Qutput:

PID controller

633 35011386 05/2009



Advanced Instructions

Description

The table below describes the settings that you may define.

Field Description

PID number Specify the PID number that you wish to configure here.
The value is between 0 and 13, 14 PID maximum per application.

Measurement Specify the variable that will contain the process value to be controlled
here.
The default scale is 0 to 10000. You can enter either an internal word
(%MWO to %MW2999) or an analog input (%IWx.0 to %IWx.1).

Conversion Check this box if you wish to convert the process variable specified as a
PID input.
If this box is checked, both the Min value and Max value fields are
accessible.
The conversion is linear and converts a value between 0 and 10,000 into
a value for which the minimum and maximum are between -32768 and
+32767.

Min value Specify the minimum and maximum of the conversion scale. The

Max value process variable is then automatically rescaled within the [Min value to
Max value] interval.
Note: The Min value must always be less than the Max value.
Min value or Max value can be internal words (%MWO0 to %MW2999),
internal constants (%KWO0 to %KW255) or a value between -32768 and
+32767.

Alarms Check this box if you wish to activate alarms on input variables.
Note: The alarm values should be determined relative to the process
variable obtained after the conversion phase. They must therefore be
between Min value and Max value when conversion is active.
Otherwise they will be between 0 and 10000.

Low Specify the high alarm value in the Low field.

Output This value can be an internal word (%MWO0 to %MW2999), an internal
constant (%KWO0 to %KW255) or a direct value.
Output must contain the address of the bit which will be set to 1 when
the lower limit is reached. Output can be either an internal bit (%MO0 to
%M255) or an output (%Qx.0 to %Qx.32).

High Specify the low alarm value in the High field.

Output This value can be an internal word (%MWO0 to %MW2999), an internal
constant (%KWO0 to %KW255) or a direct value.
Output must contain the address of the bit which will be set to 1 when
the upper limit is reached. Output can be either an internal bit (%MO to
%M255) or an output (%Qx.0 to %Qx.32).

Diagram The diagram allows you to view the different possibilities available for

configuring your PID.

35011386 05/2009

634




Advanced Instructions

PID Tab of PID function

At a Glance

The PID tab is used to enter the internal PID parameters.
NOTE: It is accessible in offline mode.

PID Tab of the PID Function

The screen below is used to enter the internal PID parameters.

I = =
énéra Input PID AT ‘ Output Animation

Apply | Cancel ‘
Setpoint Corrector type Parameters Sampling Period
M1 Ti (x0 1) | 123 | FAY ] (¢ 10ms)

Td (il 15) MW

PID controller

635

35011386 05/2009



Advanced Instructions

Description

The table below describes the settings that you may define.

Field

Description

PID number

Specify the PID number that you wish to configure here.
The value is between 0 and 13, 14 PID maximum per application.

Setpoint

Specify the PID setpoint value here. This value can be an internal word
(%MWO to %MW2999), an internal constant (%KWO0 to %KW255) or a
direct value.

This value must therefore be between 0 and 10000 when conversion
is inhibited. Otherwise it must be between the Min value and the
Max value for the conversion.

Corrector type

If the PID operating mode has been previously chosen in the General
tab, you can select the desired Corrector type (PID or Pl) from the
drop-down list. If other operating modes have been chosen the
Corrector type is set to automatic and cannot be modified manually.
If Pl is selected from the drop-down list, the Td parameter is forced to
zero and this field is disabled.

Kp * 100

Specify the PID proportional coefficient multiplied by 100 here.

This value can be an internal word (%MWO to %MW2999), an internal
constant (%KWO to %KW255) or a direct value.

The valid range for the Kp parameter is: 0 < Kp < 10000.

Note: If Kp is mistakenly set to 0 (Kp < 0 is invalid), the default value
Kp=100 is automatically assigned by the PID function.

TI (0.1 sec)

Specify the integral action coefficient here for a timebase of 0.1
seconds.

This value can be an internal word (%MWO0 to %MW2999), an internal
constant (%KWO0 to %KW255) or a direct value.

It must be between 0 and 20000.

Note: To disable the integral action of the PID, set this coefficient to 0.

Td (0.1 sec)

Specify the derivative action coefficient here for a timebase of 0.1
seconds.

This value can be an internal word (%MWO to %MW2999), an internal
constant (%KWO0 to %KW255) or a direct value.

It must be between 0 and 10000.

Note: To disable the derivative action of the PID, set this coefficient to
0.

35011386 05/2009

636




Advanced Instructions

Field Description

Sampling period | gpecify the PID sampling period here for a timebase of 102 seconds
(10 ms).

This value can be an internal word (%MWO0 to %MW2999), an internal
constant (%KWO0 to %KW255) or a direct value.

It must be between 1 (0.01 s) and 10000 (100 s).

Diagram The diagram allows you to view the different possibilities available for
configuring your PID.

NOTE: When AT is enabled, Kp, Ti and Td parameters are no longer set by the user
for they are automatically and programmatically set by the AT algorithm. In this case,
you must enter in these fields an internal word only (%MWO0 to %MW2999).

Note: Do not enter an internal constant or a direct value when AT is enable, for this
will trigger an error when running your PID application.

637 35011386 05/2009



Advanced Instructions

AT Tab of PID Function

At a Glance

The setting of correct PID parameters may be complex and time-consuming. This
can make process control difficult to setup for the less experienced, though not
necessarily for a process control professional. Thus, optimum tuning may
sometimes be difficult to achieve.

The PID Auto-Tuning algorithm is designed to automatically determine adequate
values for the following four PID terms:

e Gain factor,

e Integral value,

e Derivative value, and

e Direct or Reverse action.

Thus, the AT function can provide rapid and fine tuning for the process loop.

AT Requirements
PID Auto-tuning is particularly suited for temperature control processes.

In general, the processes that can be controlled by the AT function must meet the

following requirements:

e the process is mostly linear over the entire operating range,

e the process response to a level change of the analog output follows a transient
asymptotic pattern, and

e there is little disturbance in process variables. (In the case of a temperature
control process, this implies there is no abnormally high rate of heat exchange
between the process and its environment.)

35011386 05/2009 638



Advanced Instructions

AT Operating Principle

The following diagram describes the operating principle of the AT function and how
it interacts with the PID loops:

Sampling Auto/Manual
period » Anolog
Direct/Reverse Cutput
¢ PID contreller Action
Operation mode Control
Integral Period
High Limit [
ledlﬁ . v
SETPOINT + :‘ g +>®* Kp » Némlenctal L | Limiter ’P} » VOUIDDU‘I 7'([t))|gt|1alt
utpu ariable LitpLI
Operation mode — &
\ | D % i Low Limit
External
measuremem+ Conversion -pe Derivative L Manual

Cutput

+ * Autotuning algorithm
Alarm  Alarm
Low  High A

AT SET- !

4

Sampling
Period

639 35011386 05/2009



Advanced Instructions

AT Tab of the PID function

The screen below is used to enable/disable the AT function and enter the AT
parameters.

NOTE: It is accessible in offline mode only.

Général Input PID AT Output Animation

Apply ‘ Cancel |

AT mode Measurement Limit Qutput Setpoint

Authorize | |

Setpoint PID controller

Description

PID Auto-Tuning is an open-loop process that is acting directly on the control
process without regulation or any limitation other than provided by the Process
Variable (PV) Limit and the Output Setpoint.

35011386 05/2009 640



Advanced Instructions

A WARNING

UNSTABLE PID OPERATION

Therefore, both values must be carefully selected within the allowable range as
specified by the process to prevent potential process overload.

e The Process Variable (PV) limit and the output setpoint values must be set
carefully.

e Select within the allowable range, values for the Process Variable and Output
Setpoint.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

A WARNING

UNEXPECTED EQUIPMENT OPERATION

Do not use relay output with PID as this may result in the number of permitted
operations for relays being exceeded and the relay destroyed. Depending on the
process being controlled, this can have hazardous consequences.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

641

35011386 05/2009




Advanced Instructions

The table below describes the settings that you may define.

Field

Description

Authorize

Check this box if you wish to enable the AT mode.

There are two ways to use this checkbox, depending on whether you set the

operating mode manually or via a word address in the General tab of the PID

function:

e If you set the Operating mode to PID+AT or AT from the General tab (see
General Tab of PID function, page 630), then the Authorize option is
automatically checked and is not available (it cannot be cleared).

e If you set the operating mode via a word address %MWx (%MWx = 2:
PID+AT; %MWx = 3: AT), then you must check the Authorize option
manually to allow configuring the AT parameters.

Result: In either of the above cases, all the fields in this AT tab configuration
screen become active and you must fill in the Setpoint and Output fields with the
appropriate values.

Process
Variable
(PV) Limit

Specify the limit that the measured process variable shall not exceed during the
AT process. This parameter helps provide stability to the control system, as AT
is an open loop process.

This value can be an internal word (%MWO0 to a maximum of %MW2999,
depending on amount of system memory available), an internal constant
(%KWO to %KW255) or a direct value.

This value must therefore be between 0 and 10000 when conversion is
inhibited. Otherwise it must be between the Min value and the Max value for the
conversion.

AT Output
setpoint

Specify the AT output value here. This is the value of the step-change that is
applied to the process.

This value can be an internal word (%MWO to %MW2999), an internal constant
(%KWO to %KW255) or a direct value.

This value must therefore be between 0 and 10000.

The AT output setpoint value should be chosen appropriately using your
practical experience of the process you are controlling. In case of doubt ,or to
determine the most appropriate value, select manual mode and monitor the
system response to various manual output setpoint trials.

Note: The AT Output Setpoint must always be larger than the output last applied
to the process.

NOTE: When the AT function is enabled, constants (%KWHx) or direct values are no
longer allowed, only memory words are allowed in the following set of PID fields:

o Kp, Ti and Td parameters must be set as memory words (%MWXx) in the PID

tab;

e Action field is automatically set to "Address bit" in the OUT tab;
e Bit box must be filled in with an adequate memory bit (%Mx) in the OUT tab.

35011386 05/2009

642




Advanced Instructions

Calculated Kp, Ti, Td Coefficients

Once the AT process is complete, the calculated Kp, Ti and Td PID coefficients:
e are stored in their respective memory words (%MWx), and
e can be viewed in the Animation tab, in TwidoSuite online mode only.

643 35011386 05/2009



Advanced Instructions

Output Tab of the PID

At a Glance

The tab is used to enter the PID output parameters.
NOTE: It is accessible in offline mode.

Ouput Tab of the PID Function

The screen below is used to enter the internal PID parameters.

Général Input PID AT Output Animation

Apply | _ cancel |
Action Limits Manualmode  Output
Min Bit
Bit Bit | N |
| N | Max Output L]

Setpoint PID Controller

Output PWM
Authorize

Périod (0.1s)

Qutput

35011386 05/2009

644



Advanced Instructions

Description

The table below describes the settings that you may define.

Field

Description

PID number

Specify the PID number that you wish to configure here.
The value is between 0 and 13, 14 PID maximum per application.

Action

Specify the type of PID action on the process here. Three options are
available: Reverse, Direct or bit address.

If you have selected bit address, you can modify this type via the
program, by modifying the associated bit which is either an internal bit
(%MO to %M255) or an input (%Ix.0 to %Ix.32).

Action is direct if the bit is set to 1 and reverse if it is not.

Note: When AT is enabled, the Auto-Tuning algorithm automatically
determines the correct type of action direct or reverse for the control
process. In this case, only one option is available from the Action
dropdown list: Address bit. You must then enter in the associated Bit
textbox an internal word (%MWO to %MW2999). Do not attempt to enter
an internal constant or a direct value in the Bit textbox, for this will trigger
an execution error.

Limits
Bit

Specify here whether you want to place limits on the PID output. Three
options are available: Enable, Disable or bit address.

If you have selected bit address, you can enable (bit to 1) or disable (bit
to 0) limit management by the program, by modifying the associated bit
which is either an internal bit (%MO to %M255) or an input (%Ix.0 to
%I1x.32).

Min.
Max.

Set the high and low limits for the PID output here.

Note: The Min. must always be less than the Max..

Min. or Max. can be internal words (%MWO0 to %MW2999), internal
constants (%KWO to %KW255) or a value between 1 and 10000.

Manual mode
Bit
Output

Specify here whether you want to change the PID to manual mode. Three
options are available: Enable, Disable or bit address.

If you have selected bit address, you can switch to manual mode (bit to
1) or switch to automatic mode (bit to 0) using the program, by modifying
the associated bit which is either an internal bit (%MO0 to %M255) or an
input (%lIx.0 to %Ix.32).

The Output of manual mode must contain the value that you wish to
assign to the analog output when the PID is in manual mode.

This Output can be either a word (%MWO to %MW2999) or a direct value
in the [0-10000] format.

Analog output

Specify the PID output in auto mode here.
This Analog output can be %MW-type (%MWO to %MW2999) or %QW
type (%QWx.0).

645

35011386 05/2009



Advanced Instructions

Field

Description

PWM output
enabled
Period (0.1s)
Output

Check this box if you want to use the PWM function of PID.

Specify the modulation period in Period (0.1s). This period must be
between 1 and 500 and can be an internal word (%MWO to %MW2999) or
an internal constant (% KWO0 to %KW255). PWM precision depends both
pwm period and scan period. The precision is improved when PWM.R has
greatest number of values. For instance with scan period = 20ms and
PWM period =200ms, PWM.R can take values 0%, 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80%, 90%, 100%. With scan period = 50ms and PWM
period = 200ms, PWM.R can take values 0%, 25%, 50%, 75% and 100%
of the periode PWM.P.

Example : case of PWMR = 75%

PWM T T T I‘ ‘I T T I‘ - 4’
— Ts [ (ms)
— |
| Ton |

Ts = Scan Period
L
. PWMP | Ton = sum of Ts

Specify the PWM output bit as the value in Output. This can be either an
internal bit (%MO0 to %M255) or an output (%Qx.0 to %Qx.32).

Diagram

The diagram allows you to view the different possibilities available for
configuring your PID.

Note:

e The term Reverse in the action field is used to reach a high setpoint (e.g.: for

heating)
AC

setpoint —/— _

-

1
»

e The term Direct in the action field is used to reach a low setpoint (e.g.: for cooling)

setpoint \

A°C
- o
1

35011386 05/2009

646



Advanced Instructions

How to Access PID Debugging

At a Glance
The following paragraphs describe how to access the PID debugging screens on
TWIDO controllers.
Procedure
The following table describes the procedure for accessing the PID debugging
screens:
Step Action
1 Check that you are in online mode.
2 In the monitor software configuration screen, select Advanced Objects from
the Object Category frame and choose PID from the Objects Type frame.
3 Select the desired PID# from the PID table.
Note: You can also double-click the PID graphic element in the ladder rung to
access the PID configuratrion window.
4 Click the Animation tab.
Result: The PID configuration window opens and displays the Animation
(see page 648) tab by default.
647 35011386 05/2009




Advanced Instructions

Animation Tab of PID Function

At a Glance

The tab is used to debug the PID.

The diagram depends on the type of PID control that you have created. Only
configured elements are shown.

The display is dynamic. Active links are shown in red and inactive links are shown
in black.

NOTE: It is accessible in online mode. In this mode, when the PLC is in periodic
task, the value displayed in the Ts Field (in the PID software configuration screen)
can be different with the parameter entered (%MW). The Ts value is a multiple of the
periodic task, whereas the %MW value is the value read by the PLC.

35011386 05/2009

648



Advanced Instructions

Animation Tab of PID Function
The screen below is used to view and debug the PID.

e
Eenera nput !E ! Output ‘ Animation

Apply ‘ Cancel ‘

QOperating mode List of PID states

AT +PID 8/29/2005 9:45 AM PID Stop v

Ts
20

Setpoint PID controller
Kp i Td B2y /\ﬁ ”“
0 Il Jlo | o o

AT QOutput setpoint

Py o vt
Limit [ reate an
AT animation table
0

649 35011386 05/2009



Advanced Instructions

Description
The following table describes the different zones of the window.

Field Description

PID number Specify the PID number that you wish to debug here.
The value is between 0 and 13, 14 PID maximum per application.

Operating mode | This field shows the current PID operating mode.

List of PID states | This dropdown list allows you to view the last 15 PID states in real time.
This list is updated with each change of state indicating the date and time
of the change as well as the current state.

Create an Click on Create an Animation Table, to create a file containing all the
Animation Table | variables shown in the diagram to enable you modify them online and
debug your PID.

35011386 05/2009 650



Advanced Instructions

Trace Screen of PID Function

At a Glance

This screen allows you to view PID operation and to make adjustments to the way it
behaves.

The graphs begin to be traced as soon as the debug window is displayed.
NOTE: It is accessible in online mode.

Animation Tab of PID Function
The screen below is used to view the PID control.

60 min v

60 min

45 min

15 min

Initialize

Measure

Export

651 35011386 05/2009



Advanced Instructions

Description

The following table describes the different zones of the window.

Field Description
PID number Specify the PID number that you wish to view here.

The value is between 0 and 13, 14 PID maximum per application.
Chart This zone displays the setpoint and process value graphs.

The scale on the horizontal axis (X) is determined using the menu to the
top right of the window.

The scale on the vertical axis is determined using the PID input
configuration values (with or without conversion). It is automatically
optimized so as to obtain the best view of the graphs.

Horizontal axis

This menu allows you to modify the scale of the horizontal axis. You can

scale menu choose from 4 values: 15, 30, 45 or 60 minutes.
Initialize This button clears the chart and restarts tracing the graphs.
Export This button enables you to export the screen data into Excel format.

Click on Export to open a dialog box in which you can specify the name
and location of an .cvs file. In this dialog box, click Save to export the
data or Cancel to abandon the export.

35011386 05/2009

652




Advanced Instructions

PID States and Error Codes

At a Glance

In addition to the List of PID States available from the Animation dialog box (see
Animation Tab of PID Function, page 648) that allows to view and switch back to one
of the 15 latest PID states, the Twido PID controller also has the ability to record the
current state of both the PID controller and the AT process to a user-defined memory
word.

To find out how to enable and configure the PID state memory word (%MWi) see
General Tab of PID function, page 630.

PID State Memory Word

The PID state memory word can record any of three types of PID information, as
follows:

e Current state of the PID controller (PID State)

e Current state of the autotuning process (AT State)

e PID and AT error codes

NOTE: The PID state memory word is read-only.

PID State Memory Word

The following is the PID controller state versus memory word hexadecimal coding
concordance table:

PID State hexadecimal notation | Description

0000h PID control is not active

2000h PID control in progress

4000h PID setpoint has been reached

653

35011386 05/2009



Advanced Instructions

Description of AT State

The autotuning process is divided into 4 consecutive phases. Each phase of the
process must be fulfilled in order to bring the autotuning to a successful completion.

The following process response curve and table describe the 4 phases of the Twido
PID autotuning:

PID O [ x|

End of Autetuning
{Computing the AT
parameters)

45 min v
60 min

30 min

15 min

Initialize

30 15

45
1
Phase 1: l Fhase = First Phase & Phase 4 Second
Stabilzation SlepRasponse Rekxation Slep-Rasponse

Order

Measure

Export

35011386 05/2009

654



Advanced Instructions

The autotuning phases are described in the following table:

AT Phase | Description

1 Phase 1 is the stabilization phase. It starts at the time the user launches the
AT process. During this phase, the Twido autotuning performs checks to
ensure that the process variable is in steady state.

Note: The output last applied to the process before start of the autotuning is
used as both the starting point and the relaxation point for the autotuning

process.

2 Phase 2 applies the fist step-change to the process. It produces a process
step-response similar to the one shown in the above figure.

3 Phase 3 is the relaxation phase that starts when the first step-response has
stabilized.

Note: Relaxation occurs toward equilibrium that is determined as the output
last applied to the process before start of the autotuning.

4 Phase 4 applies the second step-change to the process in the same amount
and manner as in Phase 2 described above. The autotuning process ends and
the AT parameters are computed and stored in their respective memory words
upon completion of Phase 4.

Note: After this phase is complete, the process variable is restored to the
output level last applied to the process before start of the autotuning.

AT State Memory Word

The following is the PID controller state versus memory word hexadecimal coding
concordance table:

AT State hexadecimal notation | Description

0100h Autotuning phase 1 in progress
0200h Autotuning phase 2 in progress
0400h Autotuning phase 3 in progress
0800h Autotuning phase 4 in progress
1000h Autotuning process complete

655 35011386 05/2009



Advanced Instructions

PID and AT Error Codes

The following table describes the potential execution errors that may be
encountered during both PID control and autotuning processes:

PID/AT Error code
Processes | (hexadecimal) | Description
PID Error | 8001h Operating mode value out of range
8002h Linear conversion min and max equal
8003h Upper limit for discrete output lower than lower limit
8004h Process variable limit out of linear conversion range
8005h Process variable limit less than 0 or greater than 10000
8006h Setpoint out of linear conversion range
8007h Setpoint less than 0 or greater than 10000
8008h Control action different from action determined at AT start
Autotuning | 8009h The process variable (PV) limit has been reached
Error 800Ah Due to either oversampling or output setpoint too low
800Bh Kp is zero
800Ch The time constant is negative
800Dh Delay is negative
800Eh Error calculating Kp
800Fh Time constant over delay ratio > 20
8010h Time constant over delay ratio < 2
8011h The limit for Kp has been exceeded
8012h The limit for Ti has been exceeded
8013h The limit for Td has been exceeded

35011386 05/2009 656



Advanced Instructions

PID Tuning with Auto-Tuning (AT)

Overview of PID Tuning

The PID control function relies on the following three user-defined parameters: Kp,
Ti and Td. PID tuning aims at determining these process parameters accurately to
provide refined control of the process.

Scope of the Auto-Tuning

The AT function of the Twido PLC is especially suited for automatic tuning of thermal
processes. As values of the PID parameters may vary greatly from one control
process to another, the auto-tuning function provided by the Twido PLC can help
you determine more accurate values than simply provided by best guesses, with
less effort.

NOTE: Not recommended to use the auto-tuning when other PID are running.

Auto-Tuning Requirements

When using the auto-tuning function, make sure the control process and the Twido

PLC meet all of the following four requirements:

e The control process must be an open-loop, stable system.

e Atthe start of the auto-tuning run, the control process must be in steady state with
a null process input (e.g.: an oven or a furnace shall be at ambient temperature.)

e During operation of the auto-tuning, make sure that no disturbances enter
through the process for either computed parameters will be incorrect or the auto-
tuning process will not operate correctly (e.g.: the door of the oven shall not be
opened, not even momentarily.)

e Configure the Twido PLC to scan in Periodic mode. Once you have determined
the correct sampling period (Ts) for the auto-tuning, the scan period must be
configured so that the sampling period (Ts) is an exact multiple of the Twido PLC
scan period.

NOTE: To ensure a correct run of the PID control and of the auto-tuning process, it
is essential that the Twido PLC be configured to execute scans in Periodic mode
(not Cyclic). In Periodic mode, each scan of the PLC starts at regular time intervals.
This way, the sampling rate is constant throughout the measurement duration
(unlike cyclic mode where a scan starts as soon as the previous one ends, which
makes the sampling period unbalanced from scan to scan.)

657 35011386 05/2009



Advanced Instructions

AT Operating Modes

The auto-tuning can be used either independently (AT mode) or in conjunction with

the PID control (AT + PID):

o AT mode: After convergence of the AT process and successful completion with
the determination of the PID control parameters Kp, Ti and Td (or after detection
of an error in the AT algorithm), the AT numerical output is set to 0 and the
following message appears in the List of PID States drop-down list: "Auto-tuning
complete."

e AT + PID mode: The AT is launched first. After successful completion of the AT,
the PID control loop starts (based on the Kp, Tl and Td parameters computed by
the AT)."

Note on AT+PID: If the AT algorithm encounters an error:

e no PID parameter is computed,;

e the AT numerical output is set to output last applied to the process before start
of the autotuning;

e an error message appears in the List of PID States drop-down list

e the PID control is cancelled.

NOTE: Bumpless transition
While in AT+PID mode, the transition from AT to PID is bumpless.

Methods for Determining the Sampling Period (Ts)

As will be explained in the two following sections (see Appendix 1: PID Theory
Fundamentals, page 672 and Appendix 2: First-Order with Time Delay Model,
page 674), the sampling period (Ts) is a key parameter of the PID control. The
sampling period can be deduced from the AT time constant (7).

There are two methods for evaluating the correct sampling period (Ts) by using the
auto-tuning:- They are described in the following sections.

e The process response curve method

e The trial-and-error method

Both methods are described in the two following subsections.

Introducing the Process Response Curve Method

This method consists in setting a step change at the control process input and
recording the process output curve with time.

The process response curve method makes the following assumption:
e The control process can be adequately described as a first-order with time delay
model by the following transfer function:

S_ ko
U l+1p
(For more details, see Appendix 2: First-Order With Time Delay Model)

35011386 05/2009

658



Advanced Instructions

Using the Process Response Curve Method

To determine the sampling period (Ts) using the process response curve method,
follow these steps:

Step

Action

1

It is assumed that you have already configured the various settings in the
General, Input, PID, AT and Output tabs of the PID.

Select the PID > Output tab.

Select Authorize or Address bit from the Manual mode dropdown list to allow
manual output and set the Output field to a high level (in the [5000-10000]
range).

Select PLC > Transfer PC => PLC... to download the application program to
the Twido PLC.

Within the PID configuration window, switch to Trace mode.

Run the PID and check the response curve rise.

When the response curve has reached a steady state, stop the PID
measurement.
Note: Keep the PID Trace window active.

Use the following graphical method to determine time constant (t) of the

control process:

1. Compute the process variable output at 63% rise (Sigze)) by using the
foIIowing formula: 8[63%] = S[initial] + (S[ending]'s[initial])xesoﬂ’

2. Find out graphically the time abscissa (tjg3¢,)) that corresponds to S(63%).

3. Find out graphically the initial time (tjiyitia;) that corresponds the start of the

process response rise.
4. Compute the time constant (t) of the control process by using the following
relationship: T= t[63%]'t[initial]

Compute the sampling period (Ts) based on the value of (t) that you have just
determined in the previous step, using the following rule: Ts = t/75

Note: The base unit for the sampling period is 10ms. Therefore, you should
round up/down the value of Ts to the nearest 10ms.

10

Select Program > Configure the Behavior to set the San Mode parameters

and proceed as follows:

1. Set the Scan mode of the Twido PLC to Periodic.

2. Set the Scan Period so that the sampling period (Ts) is an exact multiple
of the scan period, using the following rule: Scan Period = Ts/n,

where "n" is a positive integer.

Note: You must choose "n" so that the resulting Scan Period is a positive
integer in the range [2 - 150 ms].

659

35011386 05/2009



Advanced Instructions

Example of Process Response Curve

This example shows you how to measure the time constant (t) of a simple thermal

process by using the process response curve method described in the previous
subsection.

The experimental setup for the time constant measurement is as follows:

e The control process consists in a forced air oven equipped with a heating lamp.

e Temperature measurements are gathered by the Twido PLC via a Pt100 probe,
and temperature data are recorded in °C.

e The Twido PLC drives a heating lamp via the PWM discrete output of the PID.

The experiment is carried out as follows:

Step Action

1 The PID Output tab is selected from the PID configuration screen.

2 Manual mode is selected from the Output tab.

3 The manual mode Output is set to 10000.

4 The PID run is launched from the PID Trace tab.

5 The PID run is stopped when the oven's temperature has reached a steady state.

35011386 05/2009 660



Advanced Instructions

Step

Action

The following information is obtained directly from the graphical analysis of the
response curve, as shown in the figure below:

PID 0

Spsew512

Initialize

Measure Export

where

® Sy = initial value of process variable = 260

® S, = ending value of process variable = 660

® Sig39,) = process variable at 63% rise = Sy + (Sig) - Sjp) X 63%
= 260+(660-260)x63%

=512

® 1 =time constant

= time elapsed from the start of the rise till Sjg39,) is reached
=9min30s=570s

661

35011386 05/2009




Advanced Instructions

Step Action

7 The sampling period (Ts) is determined using the following relationship:
Ts =1/75
=570/75 =7.6 s (7600 ms)
8 In the Program > Scan mode edit dialog box, the Scan Period must be set so that

the sampling period (Ts) is an exact multiple of the scan period, as in the following
example: Scan Period = Ts/76 = 7600/76 = 100 ms (which satisfies the condition:
2 ms < Scan Period < 150 ms.)

Trial-and-Error Method

The trial-and-error method consists in providing successive guesses of the sampling
period to the auto-tuning function until the auto-tuning algorithm converges
successfully towards Kp, Ti and Td that are deemed satisfactory by the user.

NOTE: Unlike the process response curve method, the trial-and-error method is not
based on any approximation law of the process response. However, it has the
advantage of converging towards a value of the sampling period that is in the same
order of magnitude as the actual value.

Top perform a trial-and-error estimation of the auto-tuning parameters, follow these
steps:

Step Action

1 Select the AT tab from the PID configuration window.
2 Set the Output limitation of AT to 10000.

3 Select the PID tab from the PID configuration window.
4

Provide the first or nt" guess in the Sampling Period field.
Note: If you do not have any first indication of the possible range for the
sampling period, set this value to the minimum possible: 1 (1 unit of 10 ms).

5 Select PLC > Transfer PC => PLC... from menu bar to download the
application program to the Twido PLC.

Launch Auto-Tuning.

Select the Animation tab from the PID configuration screen.

Wait till the auto-tuning process ends.

35011386 05/2009

662



Advanced Instructions

Step Action

9 Two cases may occur:

e Auto-tuning completes successfully: You may continue to Step 9.

o Auto-tuning unsuccessfull: This means the current guess for the
sampling period (Ts) is not correct. Try a new Ts guess and repeat steps 3
through 8, as many times as required until the auto-tuning process
eventually converges.

Follow these guidelines to provide a new Ts guess:

® AT ends with the error message "The computed time constant is
negative!": This means the sampling period Ts is too large. You
should decrease the value of Ts to provide as new guess.

® AT ends with the error message "Sampling error!": This means the
sampling period Ts is too small. You should increase the value of Ts to
provide as new guess.

10 You may now view the PID control parameters (Kp, Tiand Td) in Animation tab,
and adjust them in the PID tab of the PID configuration screen, as needed.
Note: If the PID regulation provided by this set of control parameters does not
provide results that are totally satisfactory, you may still refine the trial-and-
error evaluation of the sampling period until you obtain the right set of Kp, Ti
and Td control parameters.

Adjusting PID Parameters

To refine the process regulation provided by the PID parameters (Kp, Ti, Td)
obtained from auto-tuning, you also have the ability to adjust those parameter values
manually, directly from the PID tab of the PID configuration screen or via the
corresponding memory words (%MW).

Limitations on Using the Auto-tuning and the PID Control

Auto-tuning is best suited for processes whose time constant (t) and delay-time (0)
meet the following requirement: 10 s < (t + ) < 2700 s (i.e.: 45 min)

NOTE: Auto-tuning will not work when: (t/6) < 2 or (t/6) > 20.

PID control is best suited for the regulation of processes that satisfy the following
condition: 2 < (1/0) < 20 where (1) is the time constant of the process and (0) is the
delay-time.

NOTE: Depending on the ratio (t/6):

e (1/0) <2 : The PID regulation has reached its limitations; more advanced
regulation techniques are needed in this case.

e (t/0) > 20 : In this case, a simple on/off (or two-step) controller can be used in
place of the PID controller.

663 35011386 05/2009



Advanced Instructions

Troubleshooting of the Auto-tuning Function

The following table records the auto-tuning error messages and describes possible
causes as well as troubleshooting actions:

Error Message

Possible Cause

Explanation / Possible Solution

Autotuning error: the
process variable (PV) limit
has been reached

The process variable is reaching
the maximum value allowed.

As the AT is an open-loop process, the Process
Variable (PV) Limit works as an upper limit.

Autotuning error : due to
either oversampling or
output setpoint too low

Any of two possible causes:
® Sampling period is too small.
e AT Output is set too low.

Increase either the sampling period or the AT
Output Setpoint value.

Autotuning error: the time
constant is negative

The sampling period may be too
large.

For more details, please check out PID Tuning with
Auto-Tuning (AT), page 657.

Autotuning error: error
calculating Kp

The AT algorithm is unstable (no

convergence).

e Disturbances on the process
while autotuning have
caused a distortion of the
process static gain
evaluation.

® The process variable
transient response is not big
enough for the autotuning to
determine the static gain.

® A combination of the above
possible causes may effect
on the process.

Check the PID and AT parameters and make
adjustments that can improve convergence.
Check also that there is no disturbance that could
affect the process variable.

Try to modify

e the ouput setpoint,

o the sampling period.

Make sure there is no process disturbance while
autotuning is in progress.

constant over delay ratio < 2

Autotuning error: time /6 > 20 PID regulation may no longer be stable.

constant over delay ratio > For more details, please check out PID Tuning with
20 Auto-Tuning (AT), page 657.

Autotuning error: time /0 <2 PID regulation may no longer be stable.

For more details, please check out PID Tuning with
Auto-Tuning (AT), page 657.

Autotuning error: the limit for
Kp has been exceeded

Computed value of static gain
(Kp) is greater than 10000.

Measurement sensitivity of some application
variables may be too low. The application's
measurement range must be rescaled within the [0-
10000] interval.

Autotuning error: the limit for
Ti has been exceeded

Computed value of integral time
constant (Ti) is greater than
20000.

Computational limit is reached.

Autotuning error: the limit for
Td has been exceeded

Computed value of derivative
time constant (Td) is greater
than 10000.

Computational limit is reached.

35011386 05/2009

664




Advanced Instructions

PID Parameter Adjustment Method

Introduction

Numerous methods to adjust the PID parameters exist, we suggest Ziegler and
Nichols which have two variants:

e closed loop adjustment,

e open loop adjustment.

Before implementing one of these methods, you must set the PID action direction:

e if an increase in the OUT output causes an increase in the PV measurement,
make the PID inverted (KP > 0),

e on the other hand, if this causes a PV reduction, make the PID direct (KP < 0).

Closed Loop Adjustment

This principal consists of using a proportional command (Ti=0, Td = 0 ) to start the
process by increasing production until it starts to oscillate again after having applied
a level to the PID corrector setpoint. All that is required is to raise the critical
production level (Kpc) which has caused the non damped oscillation and the
oscillation period (Tc) to reduce the values giving an optimal regulation of the
regulator.

Measure

A

Te

time

L

665 35011386 05/2009



Advanced Instructions

According to the kind of (PID or PI) regulator, the adjustment of the coefficients is
executed with the following values:

- Kp Ti Td
PID Kpc/1,7 Tc/2 Tc/8
PI Kpc/2,22 |0,83xTc |-

where Kp = proportional production, Ti = integration time and TD = diversion time.

NOTE: This adjustment method provides a very dynamic command which can
express itself through unwanted overshootsduring the change of setpoint pulses. In
this case, lower the production value until you get the required behavior.

Open Loop Adjustment

As the regulator is in manual mode, you apply a level to the output and make the
procedure response start the same as an integrator with pure delay time.

4 Output
A
AS
h J
r
1 Measgre Integrator Process respohse

"o Tu

A

Tg

¥

Y

The intersection point on the right hand side which is representative of the integrator
with the time axes, determines the time Tu. Next, Tg time is defined as the time
necessary for the controlled variable (measurement) to have the same variation size
(% of the scale) as the regulator output.

35011386 05/2009

666



Advanced Instructions

According to the kind of (PID or PI) regulator, the adjustment of the coefficients is

executed with the following values:

- Kp Ti Td
PID -1,2 Tg/Tu 2xTu 0,5xTu
Pl -0,9 Tg/Tu 3,3xTu -

where Kp = proportional production, Ti = integration time and TD = diversion time.

NOTE: Attention to the units. If the adjustment is carried out in PL7, multiply the
value obtained for KP by 100.

This adjustment method also provides a very dynamic command, which can express
itself through unwanted overshoots during the change of setpoints’ pulses. In this
case, lower the production value until you get the required behavior. The method is
interesting because it does not require any assumptions about the nature and the
order of the procedure. You can apply it just as well to the stable procedures as to
real integrating procedures. It is really interesting in the case of slow procedures
(glass industry,...) because the user only requires the beginning of the response to

regulate the coefficients Kp, Ti and Td.

667

35011386 05/2009



Advanced Instructions

Role and Influence of PID Parameters

Influence of Proportional Action

Proportional action is used to influence the process response speed. The higher the
gain, the faster the response, and the lower the static error (in direct proportion),
though the more stability deteriorates. A suitable compromise between speed and
stability must be found. The influence of integral action on process response to a
scale division is as follows:

A°C

Kp too high

Kp correct

e =

Kp too low

Static error

¥

35011386 05/2009

668



Advanced Instructions

Influence of Integral Action

Integral action is used to cancel out static error (deviation between the process value
and the setpoint). The higher the level of integral action (low Ti), the faster the
response and the more stability deteriorates. It is also necessary to find a suitable
compromise between speed and stability. The influence of integral action on
process response to a scale division is as follows:

A

Titoo high

Ti correct

NS~

~_ Titoo low

NOTE: A low Ti means a high level of integral action.
where Kp = proportional gain, Ti = integration time and Td = derivative time.

669 35011386 05/2009



Advanced Instructions

Influence of Derivative Action

Derivative action is anticipatory. In practice, it adds a term which takes account of
the speed of variation in the deviation, which makes it possible to anticipate changes
by accelerating process response times when the deviation increases and by
slowing them down when the deviation decreases. The higher the level of derivative
action (high Td), the faster the response. A suitable compromise between speed and
stability must be found. The influence of derivative action on process response to a
scale division is as follows:

r'y

Td too high

Td too low

Td correct

35011386 05/2009 670



Advanced Instructions

Limits of the PID Control Loop
If the process is assimilated to a pure delay first order with a transfer function:

(-t)p
_xle )
(H(p)) = K(l T o)

where:
.= model time constant,

+ = model delay,
Fy

100% ¢+ — — — — — — — — — — — — — —

Measure = Mg+AM

Measure = My

—~Y

The process control performance depends on the ratio *
The suitable PID process control is attained in the following domain: 2- * -20

For * <2, in other words for fast control loops (low - ) or for processes with a large

delay (high t) the PID process control is no longer suitable. In such cases more
complex algorithms should be used.

For * >20, a process control using a threshold plus hysterisis is sufficient.

671 35011386 05/2009



Advanced Instructions

Appendix 1: PID Theory Fundamentals

Introduction

The PID control function onboard all Twido controllers provides an efficient control
to simple industrial processes that consist of one system stimulus (referred to as
Setpoint in this document) and one measurable property of the system (referred to
as Measure or Process Variable).

The PID Controller Model

The Twido PID controller implements a mixed (serial - parallel) PID correction (see
PID Model Diagram below) via an analog measurement and setpoint in the [0-
10000] format and provides an analog command to the controlled process in the
same format.

The mixed form of the PID controller model is described in the following diagram:

1(T)

.
g ;®7> P(K) Yy
+

D (Ty

where

where:

e | =the integral action (acting independently and parallel to the derivative action),

e D =the derivative action (acting independently and parallel to the integral
action),

e P =the proportional action (acting serially on the combined output of the integral
and derivative actions,

e U =the PID controller output (later fed as input into the controlled process.)

35011386 05/2009

672



Advanced Instructions

The PID Control Law

The PID controller is comprised of the mixed combination (serial - parallel) of the
controller gain (Kp), and the integral (Ti) and derivative (Td) time constants. Thus,
the PID control law that is used by the Twido controller is of the following form (Eq.1):

. . Ts j . Td . .
u(i) = Kp- 8(i)+?ZS(])+?[8(1)—80—1)]

i=1

where

Kp = the controller proportional gain,

Ti = the integral time constant,

Td = the derivative time constant,

Ts = the sampling period,

e ¢(i) = the deviation (g(i) = setpoint - process variable.)

NOTE: Two different computational algorithms are used, depending on the value of
the integral time constant (Ti):

e Ti= 0: In this case, an incremental algortihm is used.

e Ti=0: This is the case for non-integrating processes. In this case, a positional
algotrithm is used, along with a +5000 offset that is applied to the PID output
variable.

For a detailed description of Kp, Ti and Td please refer to PID Tab of PID function,
page 635.

As can be inferred from (equ.1) and (equ.1’), the key parameter for the PID
regulation is the sampling period (Ts). The sampling period depends closely on the
time constant (1), a parameter intrinsic to the process the PID aims to control. (See
Appendix 2: First-Order with Time Delay Model, page 674.)

673 35011386 05/2009



Advanced Instructions

Appendix 2: First-Order with Time Delay Model

Introduction

This section presents the first-order with time delay model used to describe a variety
of simple but nonetheless important industrial processes, including thermal
processes.

First-Order with Time Delay Model

It is widely assumed that simple (one-stimulus) thermal processes can be
adequately approximated by a first-order with time delay model.

The transfer function of such first-order, open-loop process has the following form in
the Laplace domain (equ.2):

§__k_ o
U l+1p

where

e k = the static gain,

T = the time constant,

6 = the delay-time,

U = the process input (this is the output of the PID controller),
S = the process output.

The Process Time Constant t©

The key parameter of the process response law (equ.2) is the time constant «. It is
a parameter intrinsic to the process to control.

The time constant (1) of a first-order system is defined as the time (in sec) it takes
the system output variable to reach 63% of the final output from the time the system
started reacting to the step stimulus u(t).

35011386 05/2009 674



Advanced Instructions

The following figure shows a typical first-order process response to a step stimulus:

Process output

st

63%ofS - — — —

I i
time (t)

+ - — — — —

a

+

oa - - — — — 7 —

I
O: time delay

where

e k = the static gain computed as the ratio AS/AU,
e 1 =the time at 63% rise = the time constant,

e 27t =the time at 86% rise,

e 3t = the time at 95% rise.

NOTE: When auto-tuning is implemented, the sampling period (Ts) must be chosen
in the following range: [t/125 <Ts < 1/25]. Ideally, you should use [Ts= t/75]. (See
PID Tuning with Auto-Tuning (AT), page 657.)

675 35011386 05/2009



Advanced Instructions

18.5 Floating point instructions

Aim of this Section

This section describes advanced floating point (see page 30) instructions in
TwidoSuite language.

The Comparison and Assignment instructions are described in the Numerical
Processing, page 502

What's in this Section?
This section contains the following topics:

Topic Page
Arithmetic Instructions on Floating Point 677
Trigonometric Instructions 681
Conversion instructions 683
Integer Conversion Instructions <-> Floating 685

35011386 05/2009 676



Advanced Instructions

Arithmetic Instructions on Floating Point

General
These instructions are used to perform an arithmetic operation between two
operands or on one operand.
+ addition of two operands SQRT square root of an operand
- subtraction of two operands ABS absolute value of an operand
* multiplication of two operands TRUNC whole part of a floating point value
/ division of two operands EXP natural exponential
LOG | base 10 logarithm EXPT power of an integer by a real
LN natural logarithm
Structure
Ladder Language
%Mo %MF0:=%MF10+129.7
%l3.2 %MF1:=SQRT{%MF10)
013.3 %MF2:=ABS(%:MF20)
— -
%I3.5 %MF8:=TRUNC(%MF2)
F -
Instruction List Language
LD %MO
[$MFO0 :=%MF10+129.7]
LD %I3.2
[$MF1 :=SQRT ($MF10) ]
IDR %I3.3
[$MF2 :=ABS ($MF20) ]
LDR %I3.5
[$MF8 : =TRUNC ($MF2) ]
677

35011386 05/2009




Advanced Instructions

Ladder Language

%MO %MF0:=LOG(%MF10)

H

%13.2 %MF2:=LN(% MF20)
-

E{Is.s %MF4:=EXP(%MF40)
P

I I I

%13.4 %MF6:=E XPT(%MF50,%MW52)
e -

Instruction List Language

LD $MO
[$MFO : =LOG ($MF10]

LD $I3.2
[$MF2 : =LN ($MF20) ]

LDR %I3.3
[$MF4 : =EXP ($MF40) ]

LDR %I3.4
[$MF6 : =EXPT (3$MF50 , $MW52) ]

35011386 05/2009 678



Advanced Instructions

Syntax
Operators and syntax of arithmetic instructions on floating point
Operators Syntax
+-%1 Op1:=0p2 Operator Op3
SQRT, ABS, TRUNC, |Op1:=Operator(Op2)
LOG, EXP, LN
EXPT Op1:=Operator (Op2,0p3)
NOTE: When you perform an addition or subtraction between 2 floating point
numbers, the two operands must comply with the condition: op1>op2x2-24 ,
where Op1>0p2. If this condition is not respected, the result is equal to operand 1
(Op1). This phenomenon is of little consequence in the case of an isolated
operation, as the resulting error is very low ( 2™ ), but it can have unforeseen
consequences where the calculation is repeated.
E.g. in the case where the instruction %MF2:= %MF2 + %MFO is repeated
indefinitely. If the initial conditions are %MFO0 = 1.0 and %MF2 = 0, the value %MF2
becomes blocked at 16777216.
We therefore recommend you take great care when programming repeated
calculations. If, however, you wish to program this type of calculation, it is up to the
client application to manage truncation errors.
Operands of arithmetic instructions on floating point:
Operators Operand 1 (Op1) Operand 2 (Op2) Operand 3 (Op3)
+ =%/ Y%MFi %MFi, %KFi, %MFi, %KFi,
immediate value immediate value
SQRT, ABS, LOG, | %MFi %MFi, %KFi [-]
EXP, LN
TRUNC %MFi, %MDi %MFi, %KFi [-]
EXPT Y% MFi %MFi, %KFi %MWi, %KWi,
immediate value
Note: TwidoSuite prevents the use of function with a %MWi as Op1.
679 35011386 05/2009




Advanced Instructions

Rules of Use

e Operations on floating point and integer values can not be directly mixed.

Conversion operations (see page 685) convert into one or other of these
formats.)

The system bit %S18 is managed in the same way as integer operations

(see page 511), the word %SW17 (see page 727) indicates the cause of the
detected fault.

When the operand of the function is an invalid number (e.g. logarithm of a
negative number), it produces an indeterminate or infinite result and changes bit
%S18 to 1, the word %SW17 indicates the cause of the detected error.

NOTE: For the TRUNC instruction, the system bit %S17 is not affected.

Examples for TRUNC Instruction with %MDi

The table below shows examples of TRUNC instruction when %MDi is used to store

the result :
Example Result
TRUNC (3.5) 3
TRUNC (324.18765) 324
TRUNC (927.8904) 927
TRUNC (-7.7) -7
TRUNC (45.678E+20) 2 147 483 647 (maximum signed double word) "
%S18 is set to 1
TRUNC (-94.56E+13) - 2 147 483 648 (minimum signed double word)’
%S18 is set to 1
“ Note: This example applies to the TRUNC instruction when used with %MDi. (When
used with %MFi, the TRUNC instruction has no overflow and therefore has no
maximum/minimum limits.)

35011386 05/2009

680



Advanced Instructions

Trigonometric Instructions

General

These instructions enable the user to perform trigonometric operations.

SIN | sine of an angle expressed in | ASIN i i
radian arc sine (result within 2 and 2 )

COS | cosine of an angle expressed in | ACOS

arc cosine (result within 0 and - )
radian,

TAN | tangent of an angle expressed | ATAN . .
in radian arc tangent (result within 2 and 2 )

Structure
Ladder language

%MO %MF0:=SIN(%MF10)

H

%I13.2 % MF2:=TAN(%MF10)

E{Is.s % MF4:=ATAN(%MF20) ‘
P L

Instruction List Language

LD 3MO
[$MFO0 :=SIN ($MF10) ]

LD $I3.2
[$MF2 : =TAN ($MF10) ]

LDR %I3.3
[$MF4 : =ATAN (3MF20) ]

681 35011386 05/2009




Advanced Instructions

Syntax

Rules of use

Structured text language

IF $MO THEN
$MFO:=SIN ($MF10) ;
END IF;
IF $I3.2 THEN
$MF2 : =TAN ($MF10) ;
END IF;
IF $I3.3 THEN
$MF4 : =ATAN (3MF20) ;
END IF;

Operators, operands and syntax of instructions for trigonometric operations

Operators Syntax

Operand 1 (Op1)

Operand 2 (Op2)

SIN, COS, TAN, ASIN, | Op1:=Operator(Op2)

ACOS, ATAN

YoMFi

%MFi, %KFi

e when the operand of the function is an invalid number (e.g.: arc cosine of a
number greater than 1), it produces an indeterminate or infinite result and
changes bit %S18 to 1, the word %SW17 (see page 727) indicates the cause of

the detected error.

e the functions SIN/COS/TAN allow as a parameter an angle between o«
and e but their precision decreases progressively for the angles outside the
period -~ and = because of the imprecision brought by the modulo -
carried out on the parameter before any operation.

35011386 05/2009

682




Advanced Instructions

Conversion instructions

General

Structure

Syntax

These instructions are used to carry out conversion operations.

DEG_TO_RAD conversion of degrees into radian, the result is the value
of the angle between 0 and 2
RAD_TO_DEG conversion of an angle expressed in radian, the result is

the value of the angle between 0 and 360 degrees

Ladder language

%M0 %MF0:=DEG_TO_RAD{%MF10)

M2 %MF2:=RAD_TO_DEG(%:MF20)

Instruction List Language

LD 3MO

[$MFO :=DEG_TO_RAD ($MF10) ]

LD $M2

[$MF2:=RAD_TO_DEG (%MF20) ]

Structured Text language

IF $MO THEN

$MF0 : =DEG_TO_RAD (3MF10) ;

END IF;
IF $M2 THEN

$MF2:=RAD_TO_DEG ($MF20) ;

END_IF;

Operators, operands and syntax of conversion instructions

Operators Syntax Operand 1 (Op1) Operand 2 (Op2)
DEG_TO_RAD |Op1:=Operator(Op2) %MFi %MFi, %KFi
RAD_TO_DEG

683

35011386 05/2009




Advanced Instructions

Rules of use

The angle to be converted must be between -737280.0 and +737280.0 (for

DEG_TO_RAD conversions) or between -iss- and ws  (for RAD_TO_DEG
conversions).

For values outside these ranges, the displayed result will be + 1.#QNAN, the %S18
and %SW17:X0 bits being set at 1.

35011386 05/2009 684



Advanced Instructions

Integer Conversion Instructions <-> Floating

General

Structure

Four conversion instructions are offered.

Integer conversion instructions list<-> floating:

INT_TO_REAL conversion of an integer word --> floating

DINT_TO_REAL conversion of a double word (integer) --> floating

REAL_TO_INT conversation of a floating --> integer word (the result is the
nearest algebraic value)

REAL_TO_DINT conversation of a floating --> double integer word (the result
is the nearest algebraic value)

Ladder language

%11.8

%MF0:=INT_TO REAL(%.MW10)

%MD4:=REAL TO DINT{%MF9}

Instruction List Language

1D TRUE
[$MFO:=INT TO REAL (3¥MW10) ]

LD I1.8
[$MD4 :=REAL TO_DINT (3MF9) ]

Structured Text language

$MFO :=INT_TO_REAL (3MW10) ;
IF $11.8 THEN

$MD4 :=REAL_TO DINT (3MF9) ;
END IF;

685

35011386 05/2009



Advanced Instructions

Syntax

Operators and syntax (conversion of an integer word --> floating):

Operators Syntax
INT_TO_REAL Op1=INT_TO_REAL(Op2)

Operands (conversion of an integer word --> floating):

Operand 1 (Op1) | Operand 2 (Op2)
%MFi %MWi,%KWi

Example: integer word conversion --> floating: 147 --> 1.47e+02
Operators and syntax (double conversion of integer word --> floating):

Operators Syntax
DINT_TO_REAL Op1=DINT_TO_REAL(Op2)

Operands (double conversion of integer word --> floating):

Operand 1 (Op1) |Operand 2 (Op2)
%MFi %MDi,%KDi

Example:integer double word conversion --> floating: 68905000 --> 6.8905e+07
Operators and syntax (floating conversion --> integer word or integer double word):

Operators Syntax
REAL_TO_INT Op1=Operator(Op2)
REAL_TO_DINT

Operators (floating conversion --> integer word or integer double word):

Type Operand 1 (Op1) | Operand 2 (Op2)
Words %MWi %MFi, %KFi
Double words %MDi %MFi, %KFi
Example:

floating conversion --> integer word: 5978.6 --> 5979
floating conversion --> integer double word: -1235978.6 --> -1235979

NOTE: If during a real to integer (or real to integer double word) conversion the
floating value is outside the limits of the word (or double word),bit %S18 is set to 1.

35011386 05/2009

686



Advanced Instructions

Precision of Rounding

Standard IEEE 754 defines 4 rounding modes for floating operations.
The mode employed by the instructions above is the "rounded to the nearest" mode:

"if the nearest representable values are at an equal distance from the theoretical
result, the value given will be the value whose low significance bit is equal to 0".

In certain cases, the result of the rounding can thus take a default value or an excess
value.

For example:
Rounding of the value 10.5 -> 10
Rounding of the value 11.5 -> 12

687

35011386 05/2009



Advanced Instructi

ons

18.6

ASCII instructions

Aim of this Section

This section describes advanced ASCII instructions in TwidoSuite language.

What's in this Section?

This section contains the following topics:

Topic Page
ROUND Instruction 689
ASCII to Integer Conversion 691
Integer to ASCII Conversion 693
ASCII to Float Conversion 695
Float to ASCII Conversion 697
35011386 05/2009 688




Advanced Instructions

ROUND Instruction

Instruction Description

The ROUND instruction rounds a floating point representation that is stored in an

ASCII string.

Instruction Syntax

For the ROUND instruction, use the following syntax: Op1 := ROUND( Op2,0p3 ).

For example:

In list instruction:

%MW 7 := ROUND{ %MWj,n )

In ladder language:

BAMW:7 = ROUND{ %MWi.n )

BAMW7 = ROUND( %MWin )

Instruction Parameters

The table below describes the ROUND function parameters:

Parameters

Description

Op1

%MW in which result is stored

Op2

%MW containing the floating point to be rounded

Op3

Number of significant digits required in rounding
Integer between 1 and 8

689

35011386 05/2009



Advanced Instructions

Instruction Rules

Syntax Errors

Examples

The ROUND instruction rules are as follows:
e The operand is always rounded down.
e The end character of the operand string is used as an end character for the result

string.

e The end character can be any ASCII character that is not in the interval ['0' - '9"]

([16#30 - 16#39]), except for:

dot "' (16#2E),
e minus '-' (16#2D),
plus '+' (16#2B),

o Exp'e'or'E' (16#65 or 16#45).

e The result and operand should not be longer than 13 Bytes: Maximum size of an

ASCII string is 13 Bytes.

e The scientific notation is not authorized.

TwidoSuite checks the syntax. The following examples would result in syntax errors:

Incorrect Syntax

Correct Syntax

%MW10:= ROUND (%MW1,4)
missing ":7" in result

%MW10:7 := ROUND (%MW1,4)

%MW10:13:= ROUND (%MW1 ,4)
%MW10:n where n = 7 is incorrect

%MW10:7 := ROUND (%MW1,4)

The table below shows examples of ROUND instruction:

Example Result
ROUND ("987654321", 5) "987650000"
ROUND ("-11.1", 8) 111"
ROUND ("NAN") "NAN"

35011386 05/2009

690



Advanced Instructions

ASCII to Integer Conversion

Instruction Description

The ASCII to Integer conversion instruction converts an ASCII string into an Integer
value.

Instruction Syntax

For the ASCII to Integer conversion instruction, use the following syntax:
Op1 := ASCIL_TO_INT( Op2).

For example:

In list instruction:
%MW ;= ASCII_TO_INT( %MWj )

In ladder language:

BNV = ASCI_TO_INT( %M )
BN = ASCII_TO_INT( %MW)

I —

Instruction Parameters

The table below describes the ASCII to Integer conversion function parameters:

Parameters Description
Op1 %MW in which result is stored
Op2 %MW or %KW

Conversion Rules

The ASCII to Integer instruction rules are as follows:

OP2 must be included between -32768 to 32767.

The function always reads the Most Significant Byte first.

Any ASCII character that is not in the interval ['0' - '9'] ([16#30 - 16#39]) is
considered to be an end character, except for a minus sign '-' (16#2D )when it is
placed as the first character.

In case of overflow (>32767 or <-32768), the system bit %S18 (arithmetic
overflow or error) is set to 1 and 32767 or -32768 value is returned.

If the first character of the operand is an "end" character, the value 0 is returned
and the bit %S18 is set to 1.

The scientific notation is not authorized.

691

35011386 05/2009



Advanced Instructions

Examples

Consider that the following ASCII data has been stored in %MW10 to %MW13:

Parameter Hexadecimal value ASCII value
%MW10 16#3932 ‘9,2’
%MW11 16#3133 17,3
%MW12 6#2038 tLe
%MW13 16#3820 ‘8,

The table below shows examples of ASCII to Integer conversion:

Example

Result

%MW?20 := ASCII_TO_INT(%MW10)

%MW20 = 29318

%MW20 := ASCII_TO_INT(%MW12)

%MW20 = 8

%MW20 := ASCII_TO_INT(%MW13)

%MW20 = 0 and %S18 is setto 1

35011386 05/2009

692



Advanced Instructions

Integer to ASCII Conversion

Instruction Description

The Integer to ASCII conversion instruction converts an Integer into an ASCII string
value.

Instruction Syntax

For the Integer to ASCII conversion instruction, use the following syntax:
Op1 :=INT_TO_ASCII( Op2).

For example:
In list instruction:
%MWi 4 = INT_TO_ASCII( %MW )

In ladder language:

DaMWi4 = INT_TO_ASCII( %MW )
DoMWi4 = INT_TO ASCII{ %MW

I —

Instruction Parameters
The table below describes the Integer to ASCII conversion function parameters:

Parameters Description

Op1 %MW in which result is stored

Op2 %MW, %KW, %SW, %IW, %QW or any WORD
(Immediate values are not accepted)

Conversion Rules

The Integer to ASCII conversion rules are as follows:

e The function writes always the Most Significant Byte first.

e End character is "Enter" (ASCII 13).

e The function automatically determines how many %MWs should be filled with
ASCII values (from 1 to 4).

693 35011386 05/2009



Advanced Instructions

Syntax Errors

Examples

TwidoSuite checks the syntax. The following examples would result in syntax errors:

Incorrect Syntax

Correct Syntax

missing ":4" in result

%MW10 := INT_TO_ASCII (%MW1)

%MW10:4 := INT_TO_ASCII (%MW1)

%MW10:n := INT_TO_ASCII (%MW1)
%MW10:n where n # 4 is incorrect

%MW10:4 := INT_TO_ASCII (%MW1)

For the instruction MW10:4 := INT_TO_ASCII(%MW1):

If ... Then...

Integer value Hexadecimal value ASCII value

%MW1 = 123 %MW10 = 16#3231 2,1
%MW11 = 16#0D33 ‘3

MW = 45 %MW10 = 16#3534 ‘5, ‘4
%MW11 = 16#000D ‘Enter

%MW1 =7 %MW10 = 16#0D37 ‘Enter’, ‘7’
%MW10 = 16#3145 1,

%MW1 < -12369 %MW11 = 16#3332 ‘3,2
%MW10 = 16#3936 ‘9,6’
%MW11 = 16#000D ‘Enter’

35011386 05/2009

694



Advanced Instructions

ASCII to Float Conversion

Instruction Description

The ASCII to Float conversion instruction converts an ASCI! string into a floating

point value.

Instruction Syntax

For the ASCII to Float conversion instruction, use the following syntax:
Op1 := ASCII_TO_FLOAT( Op2).

For example:

In list instruction:

%MPFi := ASCIL_TO_FLOAT( %MW] )

In ladder language:

BEMFi = ASCI_TO_FLOAT( %MW )

PaME

= ASCII_TO_FLOAT( %MW )

Instruction Parameters

|_

The table below describes the ASCII to Float conversion function parameters:

Parameters Description
Op1 %MF
Op2 %MW or %KW

Conversion Rules

ASCII to Float conversion rules are as follows:

e The function always reads the Most Significant Byte first.
o Any ASCII character that is not in the interval ['0' - '9'] ([16#30 - 16#39]) is
considered to be "end" character, except for:

dot "' (16#2E),
e minus -' (16#2D),
plus '+' (16#2B),

e Exp'e' or'E' (16#65 or 16#45).

e ASCII string format can be scientific notation (i.e. "-2.34567e+13") or decimal
notation (i.e. "9826.3457")
e In case of overflow (calculation result is >3.402824E+38 or <-3.402824E+38):

695

35011386 05/2009



Advanced Instructions

Examples

o The system bit %S18 (arithmetic overflow or error) is setto 1,

o %SW17:X3is setto 1,
e Value +/- 1.#INF (+ or - infinite value) is returned.

e |If the calculation result is between -1.175494E-38 and 1.175494E-38, then the
result is rounded to 0.0.

e If the operand is not a number:
o Value 1.#QNAN is returned,
o The bit %SW17:X0 is set to 1.

Consider that the following ASCII data has been stored in %MW10 to %MW14:

Parameter Hexadecimal value | ASCII value
%MW10 16#382D ‘8", !
%MW11 16#322E 2
%MW12 16#3536 '5', '6'
%MW13 16#2B65 '+, e’
%MW14 16#2032 e

The table below shows examples of ASCII to Float conversion:

Example

Result

%MW20 := ASCII_TO_FLOAT(%MW10)

%MF20 = -826.5

%MW20 := ASCII_TO_FLOAT(%MW11)

%MF20 = 1.#QNAN

%MW?20 := ASCII_TO_FLOAT(%MW12)

%MF20 = 6500.0

%MW20 := ASCII_TO_FLOAT(%MW13)

%MF20 = 1.#QNAN

%MW?20 := ASCII_TO_FLOAT(%MW14)

%MF20 = 2.0

35011386 05/2009

696



Advanced Instructions

Float to ASCII Conversion

Instruction Description

The Float to ASCII conversion instruction converts a floating point value into an
ASCII string value.

Instruction Syntax

For the Float to ASCII conversion instruction, use the following syntax:
Op1 := FLOAT_TO_ASCII( Op2).

For example:
In list instruction:
%MWI.7 == FLOAT_TO_ASCII{ %MFj)

In ladder language:

BEAMWT = FLOAT_TO_ASCII{ %MFi)
bW = FLOAT_TO_ASCII{ %MF})
|
1

Conversion Parameters
The table below describes the Float to ASCII conversion function parameters:

Parameters | Description
Op1 %MW
Op2 %MF or %KF

Conversion Rules

The Float to ASCII conversion rules are as follows:

e The function always writes the Most Significant Byte first,

The representation is made using conventional scientific notation,

“Infinite" or "Not A Number" results return the string "NAN",

The end character is "Enter" (ASCII 13),

The function automatically determines how many %MWs should be filled with
ASCII values,

Conversion precision is 6 figures

e The scientific notation is not authorized.

697 35011386 05/2009



Advanced Instructions

Syntax Errors

Examples

TwidoSuite checks the syntax. The following examples would result in syntax errors:

Incorrect Syntax

Correct Syntax

missing ":7" in result

%MW10 := FLOAT_TO_ASCII (%MF1)

%MW10:7 := FLOAT_TO_ASCII(%MF1)

%MW10:n := FLOAT_TO_ASCII (%MF1)
%MW10:n where n = 7 is incorrect

%MW10:7 := FLOAT_TO_ASCII(%MF1)

For the instruction %MW10:7 := FLOAT_TO_ASCII(%MF1):

Number to Convert Result
1234567800 1.23456e+09
0.000000921 9.21e-07
9.87654321 9.87654
1234 1.234e+03

35011386 05/2009

698



Advanced Instructions

18.7 Instructions on Object Tables

Aim of this Section
This section describes instructions specific to tables:

e of double words,
e of floating point objects.

Assignment instructions for tables are described in the chapter on "basic
instructions" (see page 507).

What's in this Section?
This section contains the following topics:

Topic Page
Table Summing Functions 700
Table Comparison Functions 702
Table Search Functions 704
Table Search Functions for Maximum and Minimum Values 706
Number of Occurrences of a Value in a Table 707
Table Rotate Shift Function 708
Table Sort Function 710
Floating Point Table interpolation Function 712
Mean Function of the Values of a Floating Point Table 717

699 35011386 05/2009



Advanced Instructions

Table Summing Functions

General

Structure

Syntax

The SUM_ARR function adds together all the elements of an object table:

e if the table is made up of double words, the result is given in the form of a double

word

e if the table is made up of floating words, the result is given in the form of a floating

word

Ladder language

%13.2 %MD5:=SUM_ARR(%:MD3:1)

I

%MD5:=SUM_ARR(%KD5:2)

%MF0:=SUM_ARR({%KF8:5)

Instruction List Language

LD %$I3.2

[$MD5:=SUM_ARR(3MD3:1) ]

$MD5 : =SUM_ARR (%KD5:2)
$MFO :=SUM_ARR (3KF8:5)

Syntax of table summing instruction:

Res:=SUM_ARR(Tab)

Parameters of table summing instruction

Type

Result (res)

Table (Tab)

Double word tables

%MDi

%MDi:L,%KDi:L

Floating word tables

Y%MFi

%MFi:L,%KFi:L

NOTE: When the result is not within the valid double word format range according
to the table operand, the system bit %S18 is set to 1.

35011386 05/2009

700



Advanced Instructions

Example
$MD4 : =SUM ($MD30:4)
where %MD30=10, %MD32=20, %MD34=30, %MD36=40
%MD4:=10+20+30+40

701 35011386 05/2009



Advanced Instructions

Table Comparison Functions

General

Structure

The EQUAL _ARR function carries out a comparison of two tables, element by
element.

If a difference is shown, the rank of the first dissimilar elements is returned in the
form of a word, otherwise the returned value is equal to -1.

The comparison is carried out on the whole table.

Ladder language

%I13.2 %MWS5:=EQUAL ARR({%MD20:7,%KD0:7)

%MW0:=EQUAL_ARR(%:MD20:7,%KF0:7)

%MW15:=EQUAL_ARR(%MFO0:5,%KF0:5)

— =

Instruction List Language

LD $I3.2
[$MW5 : =EQUAL _ARR ($MD20:7,KD0:7) ]

Structured Text language
$MWO : =EQUAL_ARR (%¥MD20:7,%KF0:7)

$MW15:=EQUAL ARR (%MFO:5,$KFO :5)

35011386 05/2009

702



Advanced Instructions

Syntax

Example

Syntax of table comparison instruction:

Res:=EQUAL_ARR(Tab1,Tab2)

Parameters of table comparison instructions:

Type

Result (Res)

Tables (Tab1 and Tab2)

Double word tables %MWi

%MDi:L,%KDi:L

Floating word tables | %MWi

%MFi:L,%KFi:L

NOTE:

e it is mandatory that the tables are of the same length and same type.

$MW5 : =EQUAL ARR (3MD30:4, $KD0:4)

Comparison of 2 tables:

Rank Word Table Constant word tables Difference

0 %MD30=10 %KD0=10 =

1 %MD32=20 %KD2=20 =
%MD34=30 %KD4=60 Different

3 %MD36=40 %KD6=40 =

The value of the word %MWS5 is 2 (different first rank)

703

35011386 05/2009




Advanced Instructions

Table Search Functions

General

Structure

There are 3 search functions:

e FIND_EQR: searches for the position in a double or floating word table of the first
element which is equal to a given value

e FIND_GTR: searches for the position in a double or floating word table of the first
element which is greater than a given value

e FIND_LTR: searches for the position in a double or floating word table of the first
element which is less than a given value

The result of these instructions is equal to the rank of the first element which is found
or at -1 if the search is unsuccessful.

Ladder language

%13.2 %MWS5:=FIND_EQR{%MD20:7,%KD0)

HH

%I11.2 %MWO:=FIND_GTR(%MD20:7,%KD0)

- H :

%MW1 :=FIND_LTR{%MF40:5,%KF4)

— -

Instruction List Language
LD %I3.2
[$MW5 : =FIND_EQR ($MD20:7,KDO) ]

LD $I1.2
[$MWO : =FIND GTR ($MD20:7,%KDO) |
$MW1:=FIND LTR (%MF40:5,$KF4)

35011386 05/2009

704



Advanced Instructions

Syntax of table search instructions:

Syntax

Res:=Function(Tab,Val)

Parameters of floating word and double word table search instructions:

Result (Res)

Table (Tab)

Value (val)

Floating word tables | %MWi

%MFi:L,%KFi:L

%MFi,%KFi

Double word tables %MWi

%MDi:L,%KDi:L

%MDi,%KDi

Syntax
Function
FIND_EQR
FIND_GTR
FIND_LTR
Type
Example

$MW5:=FIND EQR (%$MD30:4, $KDO0)
Search for the position of the first double word =%KD0=30 in the table:

Rank Word Table Result

0 %MD30=10 -

1 %MD32=20 -

2 %MD34=30 Value (val), rank
3 %MD36=40 -

705

35011386 05/2009



Advanced Instructions

Table Search Functions for Maximum and Minimum Values

General

Structure

Syntax

There are 2 search functions:

o MAX_ARR: search for the maximum value in a double word and floating word
table

e MIN_ARR: search for the minimum value in a double word and floating word table

The result of these instructions is equal to the maximum value (or minimum) found
in the table.

Ladder language

%l1.2 %MDO0:=MIN_ARR(%:MD20:7)

—H

%MF8:=MIN_ARR(%MF40:5)

Instruction List Language

LD $I1.2
[$MDO : =MIN_ ARR ($MD20:7) ]
$MF8:=MIN_ARR ($MF40:5)

Syntax of table search instructions for max and min values:

Function Syntax
MAX_ARR Res:=Function(Tab)
MIN_ARR

Parameters of table search instructions for max and min values:

Type Result (Res) Table (Tab)
Double word tables %MDi %MDi:L,%KDi:L
Floating word tables YoMFi %MFi:L,%KFi:L

35011386 05/2009

706



Advanced Instructions

Number of Occurrences of a Value in a Table

General
This search function:
e OCCUR_ARR: searches in a double word or floating word table for a number of
elements equal to a given value
Structure
Ladder language
%I13.2 %MW5:=0CCUR_ARR(%MF20:7,%KF0)
%11.2 9% MW0:=0CCUR_ARR(®%:MD20:7,%MD1)

Instruction List Language

LD %I3.2

[$MW5 : =OCCUR_ARR ($MF20:7,%$KF0) ]

LD %I1.2

[$MWO : =OCCUR_ARR ($MD20:7, $MD1)

Syntax

Syntax of table search instructions for max and min values:

Function Syntax

OCCUR_ARR Res:=Function(Tab,Val)
Parameters of table search instructions for max and min values:

Type Result (Res) Table (Tab) Value (Val)
Double word tables %MWi %MDi:L,%KDi:L %MDi,%KDi
Floating word tables | %MFi %MFi:L,%KFi:L %MFi,%KFi
707

35011386 05/2009



Advanced Instructions

Table Rotate Shift Function

General
There are 2 shift functions:

e ROL_ARR: performs a rotate shift of n positions from top to bottom of the
elements in a floating word table

Illustration of the ROL_ARR functions

Lmhmm—no

o ROR_ARR: performs a rotate shift of n positions from bottom to top of the
elements in a floating word table

Illustration of the ROR_ARR functions

\~U'ILWN—‘O

Structure
Ladder language

%I13.2 ROL_ARR(%KW0,%:MD20:7)

] -

%I1.2 ROR_ARR(2,%MD20:7)
o -
%I1.3 ROR_ARR(2,%:MF40:5)

e |

35011386 05/2009 708



Advanced Instructions

Syntax

Instruction List Language

LDR %I3.2

[ROL_ARR (3KWO , $MD20:7) ]

LDR %Il.2

[ROR ARR (2,%MD20:7) ]

LDR %I1.3

[ROR_ARR (2, %MF40:5) ]

Syntax of rotate shift instructions in floating word or double word tables ROL_ARR

and ROR_ARR

Function Syntax

ROL_ARR Function(n,Tab)

ROR_ARR

Parameters of rotate shift instructions for floating word tables: ROL_ARR and
ROR_ARR:

Type Number of positions (n) Table (Tab)

Floating word tables | %MWi, immediate value %MFi:L

Double word tables %MWi, immediate value %MDi:L

NOTE: if the value of n is negative or null, no shift is performed.

709

35011386 05/2009



Advanced Instructions

Table Sort Function

General
The sort function available is as follows:
e SORT_ARR: performs sorts in ascending or descending order of the elements
of a double word or floating word table and stores the result in the same table.
Structure

Ladder language
%I13.2 SORT_ARR(%MW0,%MF0:6)

- -

%l1.2 SORT_ARR(-1,%MD20:8)

- H -

%I11.3 SORT_ARR(0,%MD40:8)

H - -

Instruction List Language

LD $I3.2

[SORT_ARR (%¥MW20, $MF0:6) ]
LD %$I1.2

[SORT ARR(-1,%MD20:6) ]
LD %I1.3
[SORT ARR (0,%MF40:8)

35011386 05/2009

710



Advanced Instructions

Syntax

Syntax of table sort functions:

Function

Syntax

SORT_ARR

Function(direction,Tab)

e the "direction” parameter gives the order of the sort: direction > 0 the sort is done
in ascending order; direction < 0, the sort is done in descending order, direction

= 0 no sort is performed.

e the result (sorted table) is returned in the Tab parameter (table to sort).

Parameters of table sort functions:

Type Sort direction Table (Tab)
Double word tables %MWi, immediate value %MDi:L
Floating word tables %MWi, immediate value %MFi:L

711

35011386 05/2009



Advanced Instructions

Floating Point Table interpolation Function

Overview

Interpolation Rule

The LKUP function is used to interpolate a set of X versus Y floating point data for
a given X value.

The LKUP function makes use the linear interpolation rule, as defined in the
following equation:

(equation 1:) Y =71+ {M-(LX)}
q ’ ECARES O .
for xexex , where - 1. 1 :

141

assuming x values are ranked in ascending order: x, <x,<..x..<x,  <x,

1

NOTE: If any of two consecutive Xi values are equal (X;=X,1=X), equation (1) yields

an invalid exception. In this case, to cope with this exception the following algorithm
is used in place of equation (1):

(equation 2:) ¥ = [M]

for x-x

T |

=X ,where i-1.m-1n

35011386 05/2009

712



Advanced Instructions

Graphical Representation of the Linear Interpolation Rule
The following graph illustrates the linear interpolation rule described above:

- 17

1
1
1
1
1
1
1
1
1

X

i+1

Syntax of the LKUP Function

The LKUP function uses three operands, two of which are function attributes, as
described in the following table:

Syntax

Operand 1 (Op1)
Output variable

Operand 2 (Op2)
User-defined (X) value

Operands 3 (Op3)
User-defined (X;,Y;) variable
array

[Op1: = LKUP(Op2,0p3)]

Y% MWi

%MFO

Integer value, %MWi or %KWi

Definition of Op1

Op1 is the memory word that contains the output variable of the interpolation
function.

Depending on the value of Op1, the user can know whether the interpolation was
successful or not, and what prevented success, as outlined in the following table:

Op1 Description

(%MWi)

0 Successful interpolation

1 Interpolation error: Bad array, Xp, < Xm-1

2 Interpolation error: Op2 out of range, X < Xy

713 35011386 05/2009



Advanced Instructions

Definition of Op2

Definition of Op3

Op1 Description
(%MWi)
4 Interpolation error: Op2 out of range, X > X,
8 Invalid size of data array:
® Op3is set as odd number, or
e Op3<6.

NOTE: Op1 does not contain the computed interpolation value (Y). For a given (X)
value, the result of the interpolation (Y) is contained in %MF2 of the Op3 array (See
Definition of Op3 below).

Op2 is the floating point variable (%MFO of the Op3 floating point array) that
contains the user-defined (X) value for which to compute the interpolated (Y) value:

e Valid range for Op2 is as follows: ., <op2+.x,

Op3 sets the size (Op3/ 2) of the floating-point array where the (X;,Y;) data pairs are
stored.

X; and Y; data are stored in floating point objects with even indexes, starting at

%MF4 (note that %MFO0 and %MF2 floating point objects are reserved for the user
set-point X and the interpolated value Y, respectively).

Given an array of (m) data pairs (X;,Y;), the upper index (u) of the floating point array
(%MFu) is set by using the following relationships:

e (equation 3:) op3=2-m ;

e (equation4:) u-=:.0p3-1)

35011386 05/2009

714



Advanced Instructions

The floating point array Op3 (%MFi) has a structure similar to that of the following
example (where Op3=8):

(X) (X1) (X2) (X3)
%MFO %MF4 %MF8 %MF12
%MF2 %MF6 %MF10 %MF14
(Y) (Y1) (Y2) (Y3)
(Op3=8)

NOTE: As a result of the above floating-point array's structure, Op3 must meet both
of the following requirements, or otherwise this will trigger a detected error of the
LKUP function:

e Op3is an even number, and
e Op3 > 6 (for there must be at least 2 data points to allow linear interpolation).

Structure
Interpolation operations are performed as follows:
%132  %MW20:=LKUP{%:MFO0,%KW1) LD %I3.2
— ||| | (26MW20:—LKUP(26MF0. %KW 1)]
%I1.2 %MW22:=LKUP{%MF0,10)
# H ‘, LD  %I12
[%eMW22:=LKUP(%MF0,10)]
Example
The following is an example use of a LKUP interpolation function:
[$MW20 :=LKUP ($MFO0, 10) ]
In this example:
o %MW20 is Op1 (the output variable).
® %MPFO is the user-defined (X) value which corresponding (Y) value must be
computed by linear interpolation.
o %MF2 stores the computed value (Y) resulting from the linear interpolation.
e 10 is Op3 (as given by equation 3 above). It sets the size of the floating point
array. The highest ranking item %MFu, where u=18 is given by equation 4,
above.
715 35011386 05/2009



Advanced Instructions

There are 4 pairs of data points stored in Op3 array [%MF4..%MF18]:
® %MF4 contains X{,%MF6 contains Y.

e %MF8 contains X,,%MF10 contains Y.
e %MF12 contains X3,%MF14 contains Y.
e %MF16 contains X4,%MF18 contains Yy .

35011386 05/2009 716



Advanced Instructions

Mean Function of the Values of a Floating Point Table

General

The MEAN function is used to calculate the mean average from a given number of
values in a floating point table.

Structure
Ladder Language

%I3.2  %MFO:=MEAN(%MF10:5)

H

Instruction List Language

LD $I3.2
[$MFO : =MEAN ($MF10:5) ]

Syntax
Syntax of the floating point table mean calculation function:

Function Syntax
MEAN Result=Function(Op1)

Parameters of the calculation function for a given number L of values from a floating
point table:

Operand (Op1) Result (Res)
%MFi:L, %KFi:L %MFi

717 35011386 05/2009



System Bits and System Words

19

Subject of this Chapter

This chapter provides an overview of the system bits and system words that can be

used to create control programs for Twido controllers.

What's in this Chapter?

This chapter contains the following topics:

Topic Page
System Bits (%S) 719
System Words (%SW) 727

35011386 05/2009

718




System Bits and Words

System Bits (%S)

Introduction

The following section provides detailed information about the function of system bits
and how they are controlled.

Detailed Description
The following table provides an overview of the system bits and how they are

controlled:
System Function Description Init state | Control
Bit
%S0 Cold Start Normally set to 0, it is set to 1 by: 0 S or U->§, SIM
e A power return with loss of data (battery fault),
® The user program or Animation Table Editor,
® Operations Display.
This bit is set to 1 during the first complete scan. It is
reset to 0 by the system before the next scan.
%S1 Warm Start Normally set to 0, it is set to 1 by: 0 SorU->8S
® A power return with data backup,
® The user program or Animation Table Editor,
® Operations Display.
Itis reset to 0 by the system at the end of the complete
scan.
%S4 Time base: 10 ms | The rate of status changes is measured by an internal | - S, SIM
%S5 Time base: 100 ms | clock. They are not synchronized with the controller
%S6 Time base: 1s scan.
%S7 Time base: 1 min | Example: %S4
5ms 5ms
%S8 Wiring test Initially set to 1, this bit is used to test the wiring when | 1 U
the controller is in "non-configured" state. To modify
the value of this bit, use the operations display keys to
make the required output status changes:
® Setto 1, output reset,
® Set to 0, wiring test authorized.
%S9 Reset outputs Normally set to 0. It can be set to 1 by the program or | 0 U, SIM
by the terminal (in the Animation Table Editor):
e At state 1, outputs are forced to 0 when the
controller is in RUN mode,
e At state 0, outputs are updated normally.

719

35011386 05/2009




System Bits and Words

System
Bit

Function

Description

Init state

Control

%S10

1/0 failure

Normally set to 1 (TRUE on control panel). This bit
can be set to 0 (FALSE on control panel) by the
system when an /O communication interruption is
detected.

%S11

Watchdog overflow

Normally set to 0. This bit can be set to 1 by the
system when the program execution time (scan time)
exceeds the maximum scan time (software
watchdog).

Watchdog overflow causes the controller to change to
HALT.

S, SIM

%S12

PLC in RUN mode

This bit reflects the running state of the controller. The
systems sets the bit to 1 when the controller is
running. Or to O for stop, init, or any other state.

S, SIM

%S13

First cycle in RUN

Normally at 0, this bit is set to 1 by the system during
the first scan after the controller has been changed to
RUN.

S, SIM

%S17

Last ejected bit

Normally set to 0. It is set by the system according to
the value of the last ejected bit.
It indicates the value of the last ejected bit.

S->U, SIM

%S18

Arithmetic overflow
or error

Normally set to 0. It is set to 1 in the case of an

overflow when a 16 bit operation is performed, that is:

® Aresult greaterthan + 32 767 or less than - 32 768,
in single length,

® A result greater than + 2 147 483 647 or less than
- 2 147 483 648, in double length,

® Aresult greater than + 3.402824E+38 or less than
- 3.402824E+38, in floating point,

o Division by 0,

The square root of a negative number,

® BTl or ITB conversion not significant: BCD value
out of limits.

It must be tested by the user program, after each
operation where there is a risk of an overflow, then
reset to 0 by the user if an overflow occurs.

S->U, SIM

%S19

Scan period
overrun (periodic
scan)

Normally at O, this bit is set to 1 by the system in the
event of a scan period overrun (scan time greater than
the period defined by the user at configuration or
programmed in %SWO0).

This bit is reset to 0 by the user.

S->U, SIM

35011386 05/2009

720




System Bits and Words

System
Bit

Function

Description

Init state

Control

%S20

Index overflow

Normally at 0, it is set to 1 when the address of the
indexed object becomes less than 0 or more than the
maximum size of an object.

It must be tested by the user program, after each
operation where there is a risk of overflow, then reset
to O if an overflow occurs.

S->U, SIM

%S21

GRAFCET
initialization

Normally set to 0, it is set to 1 by:

® A cold restart, %S0=1,

® The user program, in the preprocessing program
part only, using a Set Instruction (S %S21) or a set
coil -(S)- %S21,

® The terminal.

At state 1, it causes GRAFCET initialization. Active

steps are deactivated and initial steps are activated.

It is reset to 0 by the system after GRAFCET

initialization.

U->S, SIM

%S22

GRAFCET reset

Normally set to 0, it can only be set to 1 by the
program in pre-processing.

At state 1 it causes the active steps of the entire
GRAFCET to be deactivated. It is reset to 0 by the
system at the start of the execution of the sequential
processing.

U->S, SIM

%S23

Preset and freeze
GRAFCET

Normally set to 0, it can only be set to 1 by the
program in the pre-processing program module.

Set to 1, it validates the pre-positioning of GRAFCET.
Maintaining this bit at 1 freezes the GRAFCET
(freezes the chart). It is reset to 0 by the system at the
start of the execution of the sequential processing to
ensure that the GRAFCET chart moves on from the
frozen situation.

U->S, SIM

%524 (1)

Operations Display

Normally at 0, this bit can be set to 1 by the user.

® At state 0, the Operator Display is operating
normally,

e Atstate 1, the Operator Display is frozen, stays on
current display, blinking disabled, and input key
processing stopped.

M This system bit is not available for the
Twido Extreme TWDLEDCK1 PLC.

U->S

721

35011386 05/2009




System Bits and Words

System
Bit

Function

Description

Init state

Control

%525 (1)

Choosing a display
mode on the
operator display

You can choose between two display modes on the
2line operator display: data mode and normal mode.
o |[f %S25=0, then normal mode is enabled.
On the first line, you can write an object name (a
system word, a memory word, a system bit, etc.).
On the second line, you can read its value.
o If %S25=1, then data mode is enabled.
On the first line, you can display %SW68 value.

On the second line, you can display %SW69 value.

When %S25=1, the operator keyboard is disabled.
Note: Firmware version must be V3.0 or higher.

() This system bit is not available for the
Twido Extreme TWDLEDCK1 PLC.

%526 (1

Choosing a signed
or unsigned value
on the operator
display

You can choose between two value types: signed or

unsigned.

o If %S26=0, then signed value (-32768 to 32767)
display is enabled.
+/- signs appear at each start of line.

o If %S26=1, then unsigned value (0 to 65535)
display is enabled.

%S26 can only be used if %S25=1.
Note: Firmware version must be V3.0 or higher.

) This system bit is not available for the
Twido Extreme TWDLEDCK1 PLC.

%S31

Event mask

Normally at 1.

o Set to 0, events cannot be executed and are
queued.

e Setto 1, events can be executed,

This bit can be set to its initial state 1 by the user and
the system (on cold re-start).

U->S, SIM

%S33

Read or Write
selection for
Ethernet Server
configuration
read/change

Normally at 0.

® Setto 0, the %SW33 to %SW38 contains the
application Ethernet configuration (IP declared or
IP assigned by BOOTP or automatic IP self
assigned).

® Setto 1, then the new configuration is given by
%SW33 to %SW38.

This bit can be set to its initial state 0 by the user and
the system (on cold re-start).Then, the Ethernet is
reset to apply the application configuration whatever
the current configuration is.

U->S, SIM

35011386 05/2009

722




System Bits and Words

System
Bit

Function

Description

Init state

Control

%S38

Permission for
events to be placed
in the events queue

Normally at 1.

e Setto 0, events cannot be placed in the events
queue.

e Setto 1, events are placed in the events queue as
soon as they are detected,

This bit can be set to its initial state 1 by the user and
the system (on cold re-start).

U->S, SIM

%S39

Saturation of the
events queue

Normally at 0.
e Setto 0, all events are reported,
e Setto 1, at least one event is lost.

This bit can be set to 0 by the user and the system (on
cold re-start).

U->S, SIM

%S50

Updating the date
and time using
words %SW49 to
%SW53

Normally on 0, this bit can be set to 1 or 0 by the
program or the Operator Display.

o Setto 0, the date and time can be read,

e Setto 1, the date and time can be updated.

The controller’s internal RTC is updated on a falling
edge of %S50.

U->S, SIM

%S51

Time-of-day clock
status

Normally on 0, this bit can be set to 1 or 0 by the

program or the Operator Display.

e Setto 0, the date and time are consistent,

e Set to 1, the date and time must be initialized by
the user.

When this bit is set to 1, the time of day clock data is
not valid. The date and time may never have been
configured, the battery may be low, or the controller
correction constant may be invalid (never configured,
difference between the corrected clock value and the
saved value, or value out of range).

State 1 transitioning to state 0 forces a write of the
correction constant to the RTC.

U->S, SIM

%S52

RTC = error

This bit managed by the system indicates that the
RTC correction has not been entered, and the date
and time are false.

o Set to 0, the date and time are consistent,

e At state 1, the date and time must be initialized.

0

S, SIM

%S59

Updating the date
and time using
word %SW59

Normally on 0, this bit can be set to 1 or 0 by the

program or the Operator Display.

e Setto 0, the system word %SW59 is not managed,

® Setto 1, the date and time are incremented or
decremented according to the rising edges on the
control bits set in %SW59.

U, SIM

723

35011386 05/2009




System Bits and Words

System Function Description Init state | Control
Bit
o866 (1) | BAT LED display | This system bit can be set by the user. It allows the |0 SorU->8
enable/disable user to turn on/off the BAT LED:
(only on controllers | ® Setto 0, BAT LED is enabled (itis reset to 0 by the
that support an system at power-up), ' .
external battery: o Set to.f1t,hBAT. LEIID is dlstabletljéLED remains off
TWDLCe*40DRF even if there is a low external battery power or
there is no external battery in the compartment).
controllers.) ) o .
This system bit is not available for the
Twido Extreme TWDLEDCK1 PLC.
%569 (1) | User STAT LED Set to 0, STAT LED is off. 0 U, SIM
display Set to 1, STAT LED is on.
() This system bit is not available for the
Twido Extreme TWDLEDCK1 PLC.
%375 (1) | External battery This system bit is set by the system. It indicates the |0 S
status external battery status and is readble by the user:
(only on controllers | ® Set to 0, external battery is operating normally,
that support an ® Setto 1., external battery power is low, or external
external battery: battery is absent from compartment.
TWDLC#*40DRF | (1) This system bit is not available for the
controllers.) Twido Extreme TWDLEDCK1 PLC.
%S95 Restore memory This bit can be set when memory words were 0 U, SIM
words previously saved to the internal EEPROM. Upon
completion the system sets this bit back to 0 and the
number of memory words restored is set in %SW97
%S96 Backup program This bit can be read at any time (either by the program | 0 S, SIM
OK or while adjusting), in particular after a cold start or a
warm restart.
® Setto 0, the backup program is invalid.
e Setto 1, the backup program is valid.
%S97 Save %MW OK This bit can be read at any time (either by the program |0 S, SIM
or while adjusting), in particular after a cold start or a
warm restart.
® Setto 0, save %MW is not OK.
® Setto 1, save %MW is OK.
%S100 TwidoSuite Shows whether the TwidoSuite communication cable | - S
communications is connected.
cable connection |® Setto 1, TwidoSuite communications cable is
either not attached or TwidoSuite is connected.
® Setto 0, TwidoSuite Remote Link cable is
connected.

35011386 05/2009

724




System Bits and Words

System
Bit

Function

Description

Init state

Control

%S101

Changing a port
address (Modbus
protocol)

Used to change a port address using system words
%SW101 (port 1) and %SW102 (port 2). To do this,
%S101 must be set to 1.

e Setto 0, the address cannot be changed. The
value of %SW101 and %SW102 matches the
current port address,

e Setto 1, the address can be changed by changing
the values of %SW101 (port 1) and %SW102 (port
2). Having modified the values of the system
words, %S101 must be set back to 0.

Note:

e in online mode, the address of port 2 cannot be
changed using system bit %S101 and system
word %SW102.

® %SW102 and Port 2 are not available for the
Twido Extreme TWDLEDCK1 PLC.

%5103
%3104 (1

Using the ASCII
protocol

Enables the use of the ASCII protocol on Comm 1
(%S103) or Comm 2 (%S104). The ASCII protocol is
configured using system words %SW103 and
%SW105 for Comm 1, and %SW104 and %SW106
for Comm 2.

e Setto 0, the protocol used is the one configured in
TwidoSuite,

e Setto 1, the ASCII protocol is used on Comm 1
(%S103) or Comm 2 (%S104). In this case, the
system words %SW103 and %SW105 must be
previously configured for Comm 1, and %SW104
and %SW106 for Comm 2.

Note: %S104, %SW104, %SW106 and Comm 2 are
not available for the Twido Extreme TWDLEDCK1
PLC.

%S110

Remote link
exchanges

This bit is reset to 0 by the program or by the terminal.

® Set to 1 for a master, all remote link exchanges
(remote 1/O only) are completed.

® Setto 1 for a slave, exchange with master is
completed.

S->U

%S111

Single remote link
exchange

e Set to 0 for a master, a single remote link
exchange is completed.

® Set to 1 for a master, a single remote link
exchange is active.

%8112

Remote link
connection

o Set to 0 for a master, the remote link is activated.
o Set to 1 for a master, the remote link is
deactivated.

725

35011386 05/2009




System Bits and Words

System Function Description Init state | Control
Bit
%S113 Remote link ® Set to 0 for a master or slave, the remote link 0 S->U
configuration/opera configuration/operation is OK.
tion ® Set to 1 for a master, the remote link
configuration/operation has an error.
® Setto 1 for a slave, the remote link
configuration/operation has an error.
%S118 Remote I/O error | Normally set to 1. This bit can be setto 0 when an I/O |1 S
communication interruption is detected on the remote
link.
%S119 Local I/O error Normally set to 1. This bit can be setto 0 whenan 1/0 | 1 S
communication interruption is detected on the base
controller. %SW118 determines the nature of the
communication interruption. Resets to 1 when the
communication interruption disappears.
%S120 Input PWMO Normally set to 0. This bit can be set to 1 by the 0 S->U
overflow (%IW0.7) | controller when the signal frequency at %IW0.7 is out
of valid range for %IW0.7. Resets to 0 by the user.
%S121 Input PWMH1 Normally set to 0. This bit can be set to 1 by the 0 S->U
overflow (%IW0.8) | controller when the signal frequency at %IW0.8 is out
of valid range for %IW0.8. Resets to 0 by the user.

NOTE: (") This system bit is not available for the Twido Extreme TWDLEDCK1

PLC.

Table Abbreviations Described
Abbreviation table:

Abbreviation Description

S Controlled by the system

U Controlled by the user

U->S Set to 1 by the user, reset to 0 by the system
S->U Set to 1 by the system, reset to 0 by the user
SIM Applied in TwidoSuite Simulator

35011386 05/2009

726




System Bits and Words

System Words (%SW)

Introduction

The following section provides detailed information about the function of the system
words and how they are controlled.

Detailed Description

The following table provides detailed information about the function of the system
words and how they are controlled:

System | Function Description Control
Words
%SWO0 Controller scan Modifies controller scan period defined at configuration through the U, SIM

period (periodic task) | user program in the Animation Table Editor.

%SWA1 Save the value of a | Modifies the cycle time [5-255 ms] of a Periodic event, without losing | U,SIM
Periodic event the Period value saved in the Periodic event box of the Scan Mode
window.

Allows you to recover the Period value saved in the Periodic event box:
® in case of a cold start, or

e if the value you write in %SW1 is outside [5-255] range.

%SW1 value can be modified at each end of a cycle, in the program or
in the Animation table, without having to stop the program. Cycle times
can be correctly observed while the program is running.

%SW6 Controller Status Controller Status: S, SIM
0 = NO CONFIG
2 =STOP

3 =RUN

4 =HALT

727 35011386 05/2009



System Bits and Words

System
Words

Function

Description

Control

%SW7

Controller state

e Bit [0]: Backup/restore in progress:

o Setto 1 if backup/restore in progress,

e Set to 0 if backup/restore complete or disabled.
e Bit [1]: Controller's configuration OK:

o Set to 1 if configuration ok.
e Bit [3..2] EEPROM status bits:

® 00 = No cartridge

e 01=232kb EEPROM cartridge ~

e 10 =64 kb EEPROM cartridge”

o 11 = Reserved for future use

® Bit [4]: Application in RAM different than EEPROM:
o Setto 1 if RAM application different to EEPROM.

o Bit [5]: RAM application different to cartridge*:
o Setto 1 if RAM application different to cartridge.

e Bit [6] not used (status 0)
® Bit [7]: Controller reserved:
o Setto 1 if reserved.
® Bit [8]: Application in Write mode:
o Setto 1 if application is protected.
o Bit [9] not used (status 0)

e Bit [10]: Second serial port installed :
o Setto 1 if installed.

e Bit[11]: Second serial port type™: (0 = EIA RS-232, 1 = EIA RS-485):

® Setto 0= EIA RS-232
o Setto 1 =EIA RS-485

e Bit [12]: application valid in internal memory:
o Set to 1 if application valid.

e Bit [13] Valid application in cartridge*:
o Setto 1 if application valid.

e Bit [14] Valid application in RAM:
o Setto 1 if application valid.

e Bit [15]: ready for execution:
o Setto 1 if ready for execution.

Note: ~ EEPROM cartridge and second serial port are not available for

Twido Extreme TWDLEDCK1 PLC.

S,SIM

%SW11

Software watchdog
value

Contains the maximum value of the watchdog. The value (10 to 500
ms) is defined by the configuration.

U, SIM

35011386 05/2009

728




System Bits and Words

System | Function Description Control
Words
%SW14 | Commercial version, | For example, if %SW14=0232: S, SIM
VXX.yy ® 8 MSB=02 in hexadecimal, then xx=2 in decimal
e 8 LSB=32 in hexadecimal, then yy=50 in decimal
As a result, Commercial version is V2.50.
Note: Firmware version must be 2.5 or higher.
%SW15 | Firmware patch, Pzz | For example, if %SW15=0005: S, SIM
® 8 MSB is not used
e 8 LSB=05 in hexadecimal, then zz=5 in decimal
As a result, Firmware patch is PO5.
Note: Firmware version must be 2.5 or higher.
%SW16 | Firmware version, For example, if %SW16=0232: S, SIM
VXX.yy e 8 MSB=02 in hexadecimal, then xx=2 in decimal
e 8 LSB=32 in hexadecimal, then yy=50 in decimal
As a result, Firmware version is V2.50.
Note: Firmware version must be 2.5 or higher.
%SW17 | Default status for When an error is detected in a floating arithmetic operation, bit %S18 | Sand U,
floating operation is set to 1 and the default status of %SW17 is updated according to the | SIM
following coding:
e Bit [0]: Invalid operation, result is not a number (1.#NAN or-
1.#NAN),
e Bit 1: Reserved,
e Bit 2: Divided by 0, result is infinite (-1.#INF or 1.#INF),
e Bit 3: Result greater in absolute value than +3.402824e+38, result
is infinite (-1.#INF or 1.#INF).
%SW18- | 100 ms absolute The counter works using two words: SandU,
%SW19 | timer counter ® %SW18 represents the least significant word, SIM
® %SW19 represents the most significant word.
%SW20 | Provides status for | For more details, please refer to Programming and diagnostics for the | S
to CANopen slave CANopen fieldbus, page 310.
%SW27 | modules with node
address 1 to 16.
%SW30 | Last scan time Shows execution time of the last controller scan cycle (in ms). S, SIM
Note: This time corresponds to the time elapsed between the start
(acquisition of inputs) and the end (update of outputs) of a scan cycle.

729

35011386 05/2009




System Bits and Words

System | Function Description Control
Words
%SW31 | Max scan time Shows execution time of the longest controller scan cycle since the last | S, SIM
cold start (in ms).
Notes:
® This time corresponds to the time elapsed between the start
(acquisition of inputs) and the end (update of outputs) of a scan
cycle.
® To ensure proper detection of a pulse signal when the latching input
option is selected, the pulse width (Tgy) and the period (P) must
meet the following two requirements:
® Tony=1ms
® The input signal period (P) must follow the Nyquist-Shannon
sampling rule stating that the input signal period (P) must be at
least twice the maximum program scan time (%SW31):
P>2x %SW31.
Note: If this condition is not fulfilled, some pulses may be
missed.
%SW32 | Min. scan time Shows execution time of shortest controller scan cycle since the last | S, SIM
cold start (in ms).
Note: This time corresponds to the time elapsed between the start
(acquisition of inputs) and the end (update of outputs) of a scan cycle.
The Ethernet current IP setting have to be available for the customer
and have also to allow to be changed. The Read or Write selection will
be done using the system bit %S33.
%SW33 | With IP address: %SW33 and %SW34 U
TWDLC*E40DRF For IP address A.BB.CC.DD: %SW33 = CC.DD and %SW34 = AA.BB
%SW34 | controllers: IP address: %SW33 and %SW34
IP address for For IP address AA.BB.CC.DD: %SW33 = CC.DD and %SW34 =AA.BB
S Ethernet Server s S
%SW35 configuration Sub-network mask: %SW35 and %SW36
For Sub-network mask AA.BB.CC.DD: %SW35 = CC.DD and %SW36
read/change
=AA.BB
%SW36 Sub-network mask: %SW35 and %SW36
For Sub-network mask AA.BB.CC.DD: %SW35 = CC.DD and %SW36
=AA.BB
%SW37 Gateway address: %SW37 and %SW38
For IP address AA.BB.CC.DD: %SW233 = CC.DD and %SW34 =AA.BB
%SW38 Gateway address: %SW37 and %SW38
For IP address A.BB.CC.DD: %SW33 = CC.DD and %SW34 = AA.BB

35011386 05/2009

730



System Bits and Words

System | Function Description Control
Words
PGN object number Content
%SW33 | With Twido Extreme: | 3-2 1-0
%SW34 PGN input/output 7-6 5-4
objects status .
%sWas | o 1o0S FE 11-10 9-8 4 bits per PGN:
%SW36 15-14 13-12 0 =Normal state U
. 1 = PGN received without error
%SW37 19-18 17-16 2 = Forces PGN output to be written
%SW38 23-22 21-20 4 = PGN error (input or output)
%SW39 27-26 25-24
%SW40 31-30 29-28
%SW48 | Number of events Shows how many events have been executed since the last cold start. | S, SIM
(Counts all events except periodic events.)
Note: Set to 0 (after application loading and cold start), increments on
each event execution.
System Function Description Control
Words
%SW49 Real-Time Clock RTC Functions: words containing current date and time values (in Sand U,
%SW50 (RTC) BCD): SIM
%SW51 %SW49 xN Day of the week (N=1 for
%SW52 Monday)
%SW53
° %SW50 00SS Seconds
%SW51 HHMM Hour and minute
%SW52 MMDD Month and day
%SW53 CCYY Century and year
These words are controlled by the system when bit %S50 is at 0.
These words can be written by the user program or by the terminal
when bit %S850 is set to 1. On a falling edge of %S50 the controller’s
internal RTC is updated from the values written in these words.
%SW54 Date and time of the | System words containing the date and time of the last power failure |S, YES
%SW55 last stop or controller stop (in BCD):
%SW56 %SW54 SS Seconds
%SW57 -
%SW55 HHMM Hour and minute
%SW56 MMDD Month and day
%SW57 CCYY Century and year

731

35011386 05/2009




System Bits and Words

System Function Description Control
Words
%SW58 Code of last stop Displays code giving cause of last stop: S, SIM
1= Run/Stop input edge
2= Stop at software detected fault
(controller scan overshoot)
3= Stop command
4= Power outage
5= Stop at hardware detected fault
System Function Description Control
Word
%SW59 Adjust current Adjusts the current date. U, SIM
date Contains two sets of 8 bits to adjust current date.
The operation is always performed on rising edge of the bit. This word is
enabled by bit %S59.
Increment Decrement Parameter
bit 0 bit 8 Day of week
bit 1 bit 9 Seconds
bit 2 bit 10 Minutes
bit 3 bit 11 Hours
bit 4 bit 12 Days
bit 5 bit 13 Month
bit 6 bit 14 Years
bit 7 bit 15 Centuries
%SW60 RTC correction | RTC correction value U

35011386 05/2009 732



System Bits and Words

System
Word

Function

Description

Control

%SW63

EXCH?1 block
error code

EXCH1 error code:

0 - operation was successful

1 — number of bytes to be transmitted is too great (> 250)
2 - transmission table too small

3 - word table too small

4 - receive table overflowed

5 - time-out elapsed

6 - transmission

7 - bad command within table

8 - selected port not configured/available

9 - reception error

10 - can not use %KW if receiving

11 - transmission offset larger than transmission table
12 - reception offset larger than reception table

13 - controller stopped EXCH processing

%Swe4 (1

)

EXCHZ2 block
error code

EXCH2 error code: See %SW63.

() This system word is not available for theTwido Extreme TWDLEDCK1

PLC.

733

35011386 05/2009




System Bits and Words

System
Word

Function

Description

Control

%SWe5 (1

EXCH3 block
error code

EXCHB3 error code is implemented on Ethernet-capable
TWDLCAE40DRF Twido controllers only

1-4, 6-13: See %SW63. (Note that eror code 5 is invalid and replaced by
the Ethernet-specific error codes 109 and 122 described below.)

The following are Ethernet-specific error codes:

101 - no such IP address

102 - the TCP connection is broken

103 - no socket available (all connection channels are busy)

104 - network is down

105 - network cannot be reached

106 - network dropped connection on reset

107 - connection aborted by peer device

108 - connection reset by peer device

109 - connection time-out elapsed

110 - rejection on connection attempt

111 - host is down

120 - unknown index (remote device is not indexed in configuration table)
121 - fatal (MAC, Chip, Duplicated IP)122 - receiving timed-out elapsed
after data was sent

123 - Ethernet initialization in progress

() This system word is not available for theTwido Extreme TWDLEDCK1
PLC.

%SW67

Function and
type of controller

Contains the following information:
Controller type bits [0 -11]
8B0 = TWDLC*A10DRF

8B1 = TWDLC-A16DRF

8B2 = TWDLMDA20DUK/DTK
8B3 = TWDLC*A24DRF

8B4 = TWDLMDA40DUK/DTK
8B6 = TWDLMDA20DRT

8B8 = TWDLC+*A40DRF

8B9 = TWDLC*E40DRF

8BA = TWDLEDCK1

Bit 12,13,14,15 not used = 0

S, SIM

35011386 05/2009

734




System Bits and Words

System Function Description Control
Words

%SW68 | Elements to be If %S25=1, then data display mode is enabled. The operator keyboard | U
™M and displayed is disabled.

%sweg () simultaneously on | %SW68 and %SW69 can be displayed on the 2-line operator display:
the 2-line operator | ® %SW68 value on the first line,

display ® %SW69 value on the second line.

Note: Firmware version must be V3.0 or higher.

M This system word is not available for theTwido Extreme
TWDLEDCK1 PLC.

o,swW73 (1) | AS-Interface e Bit [0]: Set to 1 if configuration OK. SandU
and System State e Bit[1]: Setto 1 if data exchange enabled.
%sW74 (M e Bit [2]: Set to 1 if module in Offline mode.

° e Bit[3]: Set to 1 if ASI_CMD instruction terminated.

® Bit[4]: Set to 1 error in ASI_CMD instruction in progress.

M This system word is not available for theTwido Extreme
TWDLEDCK1 PLC.

%SW76 to | Down counters 1-4 | These 4 words serve as 1 ms timers. They are decremented individually | Sand U,
%SW79 by the system every ms if they have a positive value. This gives 4 down | SIM
counters down counting in ms which is equal to an operating range of 1
ms to 32767 ms. Setting bit 15 to 1 can stop decrementation.

%SW80 Base I/O Status For standard analog module, %SW8x is described as follows: S, SIM
Bit [0] All analog channels in normal state

Bit [1] Module in initialization state

Bit [2] Power supply defect

Bit [3] Configuration defect

Bit [4] Conversion in running for input channel 0
Bit [5] Conversion in running for input channel 1
Bit [6] Invalid parameter for input channel 0

Bit [7] Invalid parameter for input channel 1

Bit [8 & 9] Not used

Bit [10] Overflow value for input channel 0

Bit [11] Overflow value for input channel 1

Bit [12] Underflow value for input channel O

Bit [13] Underflow value for input channel 1

Bit [14] Not used

Bit [15] Invalid parameter for output channel

735 35011386 05/2009



System Bits and Words

System Function Description Control
Words

%SW80 Base I/O Status For TWDAMI4ALT and TWDAMMG6HT analog modules, %SW8x is S, SIM
cont'd cont'd described as follows:

Bit [0 & 1] Channel O state

0 0: Analog channel in normal state

0 1: Invalid parameter for input channel

1 0: Unavailable input value (module in initialization state, conversion in
running),

1 1: Invalid value for input channel (overflow or underflow value)

Bit [2 & 3] Channel 1 state (same description as bit [0 & 1])

Bit [4 & 5] Channel 2 state (same description as bit [0 & 1])

Bit [6 & 7] Channel 3 state (same description as bit [0 & 1])

Bit [8 to 15] Not used

%SW80 Base I/O Status For TWDAMI8HT analog module, %SW8x is described as follows: |S, SIM
contd cont'd Bit [0 & 1] Channel O state

0 0: Analog channel in normal state

0 1: Invalid parameter for input channel

1 0: Unavailable input value (module in initialization state, conversion in
running),

1 1: Invalid value for input channel (overflow or underflow value)

Bit [2 & 3] Channel 1 state (same description as bit [0 & 1])

Bit [4 & 5] Channel 2 state (same description as bit [0 & 1])

Bit [6 & 7] Channel 3 state (same description as bit [0 & 1])

Bit [8 & 9] Channel 4 state (same description as bit [0 & 1])

Bit [10 & 11] Channel 5 state (same description as bit [0 & 1])

Bit [12 & 13] Channel 6 state (same description as bit [0 & 1])

Bit [14 & 15] Channel 7 state (same description as bit [0 & 1])

%SW80 Twido Extreme For Twido Extreme only, %SW80 is described as follows: S
CANJ1939 port Bit [0] Init error - Lost address to a contending claim
status Bit [1] Init error - Unable to claim an address

Bit [2] Error passive state on port
Bit [3] Bus-off state on port

%SW81 ® Expansion I/O Module 1 Status: Same definitions as %SW80 S, SIM
® CANopen Master Module Status at Expansion Address 1:
e Bit [0] Configuration state (1 = configuration OK; 0 = configuration error)

Bit [1] Operational state (1 = PDO exchange ON; 0 = PDO exchange OFF)
Bit [2] Init state (1 = init state ON; 0 = init state OFF)
Bit [3] CAN_CMD instruction complete (1 = complete; 0 = in progress)
Bit [4] CAN_CMD instruction error (1 = error; 0 = OK)
Bit [5] Initialization error (1 = error; 0 = OK)
Bit [6] Loss of message, power supply error (1 = error; 0 = OK)

Note: For the Twido Extreme integrated CANopen bus master the reserved specific system
word is always %SW81 (%SW82 ... %SW87 are unused).

35011386 05/2009 736



System Bits and Words

System
Words

Function Description

Control

%swe2 (1

Expansion I/O Module 2 Status: Same definitions as %SW80
CANopen Master Module Status at Expansion Address 2: Same definitions as %SW81

(1) This system word is not available for theTwido Extreme TWDLEDCK1 PLC.

S, SIM

%Swa3 ()

Expansion I/O Module 3 Status: Same definitions as %SW80
CANopen Master Module Status at Expansion Address 3: Same definitions as %SW81

S, SIM

%Swea (1

Expansion I/O Module 4 Status: Same definitions as %SW80
CANopen Master Module Status at Expansion Address 4: Same definitions as %SW81

S, SIM

%SwWs5 ()

Expansion I/O Module 5 Status: Same definitions as %SW80
CANopen Master Module Status at Expansion Address 5: Same definitions as %SW81

S, SIM

%Swse (I

Expansion I/0O Module 6 Status: Same definitions as %SW80
CANopen Master Module Status at Expansion Address 6: Same definitions as %SW81

S, SIM

%Sws7 ()

Expansion /O Module 7 Status: Same definitions as %SW80
CANopen Master Module Status at Expansion Address 7: Same definitions as %SW81

() This system word is not available for theTwido Extreme TWDLEDCK1 PLC.

S, SIM

%SW94

Application’s In case of an application change, in terms of configuration or
signature programming data, the signature (sum of all checksums) changes
consequently.

hexadecimal.
Note: Firmware version must be V2.5 or higher.

If %SW94=91F3 in hexadecimal, the application’s signature is 91F3 in

S, SIM

737

35011386 05/2009




System Bits and Words

System
Words

Function

Description

Control

%SW96

Command and/or
diagnostics for
save/restore
function of
application
program and
%MW.

e Bit [0]: Indicates that the %MW memory words must be saved to
EEPROM:
e Setto 1 if a backup is required,
e Set to 0 if the backup in progress is not complete.

e Bit [1]: This bit is set by the firmware to indicate when the save is
complete:
e Setto 1 if the backup is complete,
e Set to 0 if a new backup request is asked for.

o Bit [2]: Backup error, refer to bits 8, 9, 10 and 14 for further
information:
e Setto 1if an error appeared,
e Setto 0 if a new backup request is asked for.

® Bit [6]: Set to 1 if the controller contains a valid application in RAM.
e Bit [8]: Indicates that the number of %MWs specified in %SW97 is
greater than the number of %MWs configured in the application:
e Setto 1 if an error is detected,

e Bit [9]: Indicates that the number of %MWs specified in %SW97 is
greater than the maximum number of %MWs that can be defined by
any application in TwidoSuite. Please note that bit 8 can be set even
if bit 9 is also set.

e Setto 1 if an error is detected,

e Bit[10]: Difference between internal RAM and internal EEPROM (1 =
yes).

e Setto 1 if there is a difference.

e Bit [14]: Indicates if an EEPROM write error has occurred:
e Setto 1if an erroris detected,

SandU,
SIM

%SW97

Command or
diagnostics for
save/restore
function

When saving memory words, this value represents the physical number
%MW to be saved to internal EEPROM. When restoring memory words,

this value is updated with the number of memory words restored to RAM.

For the save operation, when this number is set to 0, memory words will
not be stored. The user must define the user logic program. Otherwise,
this program is set to 0 in the controller application, except in the
following case:

On cold start, this word is set to -1 if the internal Flash EEPROM has no
saved memory word %MW file. In the case of a cold start where the
internal Flash EEPROM contains a memory word %MW list, the value of
the number of saved memory words in the file must be set in this system
word %SW97.

SandU,
SIM

35011386 05/2009

738




System Bits and Words

System | Function Description Control
Words

%SW101 | Value of the port’'s | When bit %S101 is set to 1, you can change the Modbus address of port | S

%SW102 | Modbus address 1 or port 2. The address of port 1 is %SW101, and that of port 2 is

(M %SW102.

Note:

® in online mode, the address of port 2 cannot be changed using
system bit %S101 and system word %SW102.

® %S102 and Port 2 are not available for Twido Extreme
TWDLEDCK1 PLC.

%SW103 | Configuration foruse | When bit %S103 (Comm 1) or %S104 (Comm 2) is set to 1, the ASCII | S
%SW104 | of the ASCII protocol | protocol is used. System word %SW103 (Comm 1) or %SW104 (Comm
(1 2) must be set according to the elements below:

15[14[13[12T11J10] 918 7 | 5 [4]3]2]1]¢0

Panty Baud rate

bit
Stop bit |

End of the character string % :
]

RTS /
CTS

o Baud rate:

0: 1200 bauds,
1: 2400 bauds,
2: 4800 bauds,
3: 9600 bauds,
4: 19200 bauds,
5: 38400 bauds.

e RTS/CTS:
o (: disabled,
e 1:enabled.

e Parity:
e 00: none,
e 10: odd,
e 11:even.

e Stop bit:
e 0: 1 stop bit,
o 1:2 stop bits.
o Data bits:
o 0:7 data bits,
e 1: 8 data bits.

Note: %S104, %SW104 and Comm 2 are not available for
Twido Extreme TWDLEDCK1 PLC.

739 35011386 05/2009



System Bits and Words

System
Words

Function

Description

Control

%SW105
%SW106
(1)

Configuration foruse
of the ASCII protocol

When bit %S103 (Comm 1) or %S104 (Comm 2) is set to 1, the ASCII
protocol is used. System word %SW105 (Comm 1) or %SW106 (Comm
2) must be set according to the elements below:

1571471312711 (107918 7[6[5]a4[3][2][1][0

Timeout response

Timeout frame in ms in multiples of 100 ms

Note: %S104, %SW106 and Comm 2 are not available for
Twido Extreme TWDLEDCK1 PLC.

S

%SW111

Remote link status

Indication: Bit 0 corresponds to remote controller 1, bit 1 to remote
controller 2, etc.

Bit [0] to [6]:

o Set to 0 = remote controller 1-7 absent

® Setto 1 = remote controller 1-7 present

Bit [8] to bit [14]:

o Set to 0 = remote I/O detected on remote controller 1-7

® Setto 1 = extension controller detected on remote controller 1-7

%SW112

Remote Link
configuration/operati
on error code

00: successful operations

01: timeout detected (slave)

02: checksum error detected (slave)

03: configuration mismatch (slave)

04 - (for port 1 only) Port unavailable, punit connected or punit mode
This is set to 1 by the system and must be reset by the user.

%SW113

Remote link
configuration

Indication: Bit O corresponds to remote controller 1, bit 1 to remote
controller 2, etc.

Bit [0] to [6]:

® Set to 0 = remote controller 1-7 not configured

® Setto 1 = remote controller 1-7 configured

Bit [8] to bit [14]:
® Setto 0 = remote I/O configured as remote controller 1-7
® Setto 1 = peer controller configured as remote controller 1-7

%SW114

Enable schedule
blocks

Enables or disables operation of schedule blocks by the user program
or operator display.
Bit 0: 1 = enables schedule block #0

Bit 15: 1 = enables schedule block #15
Initially all schedule blocks are enabled.
If schedule blocks are configured the default value is FFFF
If no schedule blocks are configured the default value is 0.

SandU,

SIM

35011386 05/2009

740




System Bits and Words

System | Function Description Control

Words

%SW118 | Base controller Shows conditions on base controller. S, SIM
status word Bit 9: 0 = External fault or comm. interruption

Bit 12: 0 = RTC not installed

Bit 13: 0 = Configuration error (I/O extension” configured but absent or
inoperative).

All the other bits of this word are set to 1 and are reserved. For a
controller which operates properly, the value of this word is FFFFh.
Note: “for Twido Extreme TWDLEDCK1 PLC, there is no extension I/O
and RTC is integrated.

%SW120 | Expansion 1/O One bit per module. S, SIM
M module status® Address 0 = Bit 0

1 = Detected Error

0=0K
%SW121 | ASCII frame size When bit %S103 (Comm 1) or %S104 (Comm 2) is set to 1, the ASCIl |U
%SW122 protocol is used. You can change the ASCII frame size of port 1 or port

2. The ASCII frame size of port 1 is %SW121, and that of port 2 is

%SW122.

The value is used only on EXCH instruction start. Then, if some bytes
are already received, you can’t stop the reception until the last byte.

NOTE: () This system word is not available for theTwido Extreme TWDLEDCK1
PLC.

(@) 1f a single expansion module is missing at power on, then all expansion module

bits are set to 1 (Detected Error).

Table Abbreviations Described
Abbreviation table:

Abbreviation Description

S Controlled by the system

U Controlled by the user

SIM Applied in TwidoSuite Simulator

741 35011386 05/2009



Glossary

0-9

%
Prefix that identifies internal memory addresses in the controller that are used to
store the value of program variables, constants, 1/0, and so on.

A

Addresses
Internal registers in the controller used to store values for program variables,
constants, /0, and so on. Addresses are identified with a percentage symbol (%)
prefix. For example, %I10.1 specifies an address within the controller RAM memory
containing the value for input channel 1.

Analog potentiometer
An applied voltage that can be adjusted and converted into a discrete value for use
by an application.

Analyze program
A command that compiles a program and checks for program errors: syntax and
structure errors, symbols without corresponding addresses, resources used by the
program that are not available, and if the program does not fit in available controller
memory. Error Messages are displayed in the Program Errors Viewer.

35011386 05/2009 742



Glossary

Animation table
Table created within a language editor or an operating screen. When a PC is
connected to the controller, provides a view of controller variables and allows values
to be forced when debugging. Can be saved as a separate file with an extension of
tat.

Animation Tables Editor
A specialized window in the TwidoSuite application for viewing and creating
Animation Tables.

Application
A TwidoSuite application consists of a program, configuration data, symbols, and
documentation.

Application browser
A specialized window in the TwidoSuite that displays a graphical tree-like view of an
application. Provides for convenient configuration and viewing of an application.

Application file
Twido applications are stored as file type .twd.

ASCII
(American Standard Code for Information Interchange) Communication protocol for
representing alphanumeric characters, notably letters, figures and certain graphic
and control characters.

Auto line validate
When inserting or modifying List instructions, this optional setting allows for program
lines to be validated as each is entered for errors and unresolved symbols. Each
element must be corrected before you can exit the line. Selected using the
Preferences dialog box.

Auto load
A feature that is enabled and provides for the automatic transfer of an application
from a backup cartridge to the controller RAM in case of a lost or corrupted
application. At power up, the controller compares the application that is presently in
the controller RAM to the application in the optional backup memory cartridge (if
installed). If there is a difference, then the copy in the backup cartridge is copied to
the controller and the internal EEPROM. If the backup cartridge is not installed, then
the application in the internal EEPROM is copied to the controller.

743 35011386 05/2009



Glossary

Backup

BootP

CAN

CiA

Client

coB

Coil

A command that copies the application in controller RAM into both the controller
internal EEPROM and the optional backup memory cartridge (if installed).

A UDP/IP-based protocol (Bootstrap Protocol) which allows a booting host to
configure itself dynamically and without user supervision. BootP provides a means
to notify a host of its assigned IP address.

C

Controller Area Network: field bus originally developed for automobile applications
which is now used in many sectors, from industrial to tertiary.

CAN in Automation: international organization of users and manufacturers of CAN
products.

A computer process requesting service from other computer processes.

Communication OBject: transport unit on CAN bus. A COB is identified by a
unique identifier, which is coded on 11 bits, [0, 2047]. A COB contains a maximum
of 8 data bytes. The priority of a COB transmission is shown by its identifier - the
weaker the identifier, the more priority the associated COB has.

A ladder diagram element representing an output from the controller.

35011386 05/2009

744



Glossary

Cold start or restart

Comment lines

Comments

Compact controller

A start up by the controller with all data initialized to default values, and the program
started from the beginning with all variables cleared. All software and hardware
settings are initialized. A cold restart can be caused by loading a new application into
controller RAM. Any controller without battery backup powers up in Cold Start.

In List programs, comments can be entered on separate lines from instructions.
Comments lines do not have line numbers, and must be inserted within parenthesis
and asterisks such as: ("COMMENTS GO HERE®).

Comments are texts you enter to document the purpose of a program. For Ladder
programs, enter up to three lines of text in the Rung Header to describe the purpose
of the rung. Each line can consist of 1 to 64 characters. For List programs, enter text
on n unnumbered program line. Comments must be inserted within parenthesis and
asterisks such as: (“*COMMENTS GO HERE®).

Type of Twido controller that provides a simple, all-in-one configuration with limited
expansion. Modular is the other type of Twido controller.

Configuration editor

Constants

Contact

Counter

Cross references

Specialized TwidoSuite window used to manage hardware and software
configuration.

A configured value that cannot be modified by the program being executed.

A ladder diagram element representing an input to the controller.

A function block used to count events (up or down counting).

Generation of a list of operands, symbols, line/rung numbers, and operators used in
an application to simplify creating and managing applications.

745

35011386 05/2009



Glossary

Cross References Viewer

Data variable

A specialized window in the TwidoSuite application for viewing cross references.

D

See Variable.

Date/Clock functions

Default gateway

Drum controller

EDS

EEPROM

Erase

Allow control of events by month, day of month, and time of day. See Schedule
Blocks.

The IP address of the network or host to which all packets addressed to an unknown
network or host are sent. The default gateway is typically a router or other device.

A function block that operates similar to an electromechanical drum controller with
step changes associated with external events.

E

Electronic Data Sheet: description file for each CAN device (provided by the
manufacturers).

Electrically Erasable Programmable Read-Only Memory. Twido has an internal
EEPROM and an optional external EEPROM memory cartridge.

This command deletes the application in the controller, and has two options:

e To delete the contents of the controller RAM, the controller internal EEPROM,
and the installed optional backup cartridge.
e To delete the contents of the installed optional backup cartridge only.

35011386 05/2009

746



Glossary

Executive loader
A 32-Bit Windows application used for downloading a new Firmware Executive
program to a Twido controller.

Expansion bus
Expansion 1/0 Modules connect to the base controller using this bus.

Expansion I/O modules
Optional Expansion I/0 Modules are available to add I/O points to a Twido controller.
(Not all controller models allow expansion).

F

Fast counters
A function block that provides for faster up/down counting than available with the
Counters function block. A Fast Counter can count up to a rate of 5 KHz.

FIFO
First In, First Out. A function block used for queue operations.

Firmware executive
The Firmware Executive is the operating system that executes your applications and
manages controller operation.

Forcing
Intentionally setting controller inputs and outputs to 0 or 1 values even if the actual
values are different. Used for debugging while animating a program.

Frame
A group of bits which form a discrete block of information. Frames contain network
control information or data. The size and composition of a frame is determined by
the network technology being used.

Framing types
Two common framing types are Ethernet Il and IEEE 802.3.

747 35011386 05/2009



Glossary

Function block

Gateway

Grafcet

Host

Hub

Init state

Initialize

A program unit of inputs and variables organized to calculate values for outputs
based on a defined function such as a timer or a counter.

G

A device which connects networks with dissimilar network architectures and which
operates at the Application Layer. This term may refer to a router.

Grafcet is used to represent the functioning of a sequential operation in a structured
and graphic form.

This is an analytical method that divides any sequential control system into a series
of steps, with which actions, transitions, and conditions are associated.

H

A node on a network.

A device which connects a series of flexible and centralized modules to create a
network.

The operating state of TwidoSuite that is displayed on the Status Bar when
TwidoSuite is started or does not have an open application.

A command that sets all data values to initial states. The controller must be in Stop
or Error mode.

35011386 05/2009

748



Glossary

Instance

A unique object in a program that belongs to a specific type of function block. For
example, in the timer format %TMi, i is a number representing the instance.

Instruction List language

Internet

IP Address

Ladder editor

Ladder language

Ladder list rung

Latching input

LIFO

A program written in instruction list language (IL) is composed of a series of
instructions executed sequentially by the controller. Each instruction is composed of
a line number, an instruction code, and an operand.

The global interconnection of TCP/IP based computer communication networks.

Internet Protocol. A common network layer protocol. IP is most often used with TCP.

Internet Protocol Address. A 32-bit address assigned to hosts using TCP/IP.

L

Specialized TwidoSuite window used to edit a Ladder program.

A program written in Ladder language is composed of graphical representation of
instructions of a controller program with symbols for contacts, coils, and blocks in a
series of rungs executed sequentially by a controller.

Displays parts of a List program that are not reversible to Ladder language.

Incoming pulses are captured and recorded for later examination by the application.

Last In, First Out. A function block used for stack operations.

749

35011386 05/2009



Glossary

List editor

MAC Address

Master controller

MBAP

Memory cartridge

Simple program editor used to create and edit a List program.

M

Media Access Control address. The hardware address of a device. A MAC address
is assigned to an Ethernet TCP/IP module in the factory.

A Twido controller configured to be the Master on a Remote Link network.

Modbus Application Protocol

Optional Backup Memory Cartridges that can be used to backup and restore an
application (program and configuration data). There are two sizes available: 32 and
64 Kb.

Memory usage indicator

Modbus

Modular controller

Monitor state

A portion of the Status Bar in the TwidoSuite main window that displays a
percentage of total controller memory used by an application. Provides an indication
when memory is low.

A master-slave communications protocol that allows one single master to request
responses from slaves.

Type of Twido controller that offers flexible configuration with expansion capabilities.
Compact is the other type of Twido controller.

The operating state of TwidoSuite that is displayed on the Status Bar when a PC is
connected to a controller in a non-write mode.

35011386 05/2009

750



Glossary

Network

Node

Offline operation

Offline state

Online operation

Online state

Operand

Operating states

Interconnected devices sharing a common data path and protocol for
communication.

An addressable device on a communications network.

(0

An operation mode of TwidoSuite when a PC is not connected to the controller and
the application in PC memory is not the same as the application in controller
memory. You create and develop an application in Offline operation.

The operating state of TwidoSuite that is displayed on the Status Bar when a PC is
not connected to a controller.

An operation mode of TwidoSuite when a PC is connected to the controller and the
application in PC memory is the same as the application in controller memory.
Online operation can be used to debug an application.

The operating state of TwidoSuite that is displayed on the Status Bar when a PC is
connected to the controller.

A number, address, or symbol representing a value that a program can manipulate
in an instruction.

Indicates the TwidoSuite state. Displayed in the status bar. There are four operating
states: Initial, Offline, Online, and Monitor.

751

35011386 05/2009



Glossary

Operator

Packet

PC

Peer controller

PLC

PLS

Preferences

A symbol or code specifying the operation to be performed by an instruction.

P

The unit of data sent across a network.

Personal Computer.

A Twido controller configured as a slave on a Remote Link network. An application
can be executed in the Peer Controller memory and the program can access both
local and expansion I/O data, but I/O data can not be passed to the Master
Controller. The program running in the Peer Controller passes information to the
Master Controller by using network words (%INW and %QNW).

Twido programmable controller. There are two types of controllers: Compact and
Modular.

Pulse Generation. A function block that generates a square wave with a 50% on and
50% off duty cycle.

A dialog box with selectable options for setting up the List and Ladder program
editors.

Program errors viewer

Specialized TwidoSuite window used to view program errors and messages.

Programmable controller

A Twido controller. There are two types of controllers: Compact and Modular.

35011386 05/2009

752



Glossary

Protection

Protocol

PWM

RAM

Real-time clock

Reflex output

Registers

Remote controller

Refers to two different types of application protection: password protection which
provides access control, and controller application protection which prevents all
reads and writes of the application program.

Describes message formats and a set of rules used by two or more devices to
communicate using those formats.

Pulse Width Modulation. A function block that generates a rectangular wave with a
variable duty cycle that can be set by a program.

R

Random Access Memory. Twido applications are downloaded into internal volatile
RAM to be executed.

An option that will keep the time even when the controller is not powered for a limited
amount of time.

In a counting mode, the very fast counter's current value (%VFC.V) is measured
against its configured thresholds to determine the state of these dedicated outputs.

Special registers internal to the controller dedicated to LIFO/FIFO function blocks.

A Twido controller configured to communicate with a Master Controller on a Remote
Link network.

753

35011386 05/2009



Glossary

Remote link

Resource manager

High-speed master/slave bus designed to communicate a small amount of data
between a Master Controller and up to seven Remote Controllers (slaves). There
are two types of Remote Controllers that can be configured to transfer data to a
Master Controller: a Peer Controller that can transfer application data, or a Remote
I/O Controller that can transfer I/0O data. A Remote link network can consist of a
mixture of both types.

A component of TwidoSuite that monitors the memory requirements of an
application during programming and configuring by tracking references to software
objects made by an application. An object is considered to be referenced by the
application if it is used as an operand in a list instruction or ladder rung. Displays
status information about the percentage of total memory used, and provides an
indication if memory is getting low. See Memory Usage Indicator.

Reversible instructions

Router

RTC

RTU

Run

Rung

A method of programming that allows instructions to be viewed alternately as List
instructions or Ladder rungs.

A device that connects two or more sections of a network and allows information to
flow between them. A router examines every packet it receives and decides whether
to block the packet from the rest of the network or transmit it. The router will attempt
to send the packet through the network by the most efficient path.

See Real-Time Clock.

Remote Terminal Unit. A protocol using eight bits that is used for communicating
between a controller and a PC.

A command that causes the controller to run an application program.

A rung is located between two potential bars in a grid and is composed of a group
of graphical elements joined to each other by horizontal and vertical links. The
maximum dimensions of a rung are seven rows and eleven columns.

35011386 05/2009

754



Glossary

Rung header

Scan

Scan mode

Schedule blocks

Server

Step

Stop

Subnet

A panel that appears directly over a Ladder rung and can be used to document the
purpose of the rung.

S

A controller scans a program and essentially performs three basic functions. First, it
reads inputs and places these values in memory. Next, it executes the application
program one instruction at a time and stores results in memory. Finally, it uses the
results to update outputs.

Specifies how the controller scans a program. There are two types of scan modes:
Normal (Cyclic), the controller scans continuously, or Periodic, the controller scans
for a selected duration (range of 2 - 150 msec) before starting another scan.

A function block used to program Date and Time functions to control events.
Requires Real-Time Clock option.

A computer process that provides services to clients. This term may also refer to the
computer process on which the service is based.

A Grafcet step designates a state of sequential operation of automation.

A command that causes the controller to stop running an application program.

A physical or logical network within an IP network, which shares a network address
with other portions of the network.

755

35011386 05/2009



Glossary

Subnet mask

Switch

Symbol

Symbol table

TCP

TCP/IP

Threshold outputs

Timer

A bit mask used to identify or determine which bits in an IP address correspond to
the network address and which bits correspond to the subnet portions of the
address. The subnet mask is the network address plus the bits reserved for
identifying the subnetwork.

A network device which connects two or more separate network segments and
allows traffic to be passed between them. A switch determines whether a frame
should be blocked or transmitted based on its destination address.

A symbol is a string of a maximum of 32 alphanumeric characters, of which the first
character is alphabetic. It allows you to personalize a controller object to facilitate
the maintainability of the application.

A table of the symbols used in an application. Displayed in the Symbol Editor.

T

Transmission Control Protocol.

A protocol suite consisting of the Transmission Control Protocol and the Internet
Protocol; the suite of communications protocols on which the Internet is based.

Coils that are controlled directly by the very fast counter (%VFC) according to the
settings established during configuration.

A function block used to select a time duration for controlling an event.

35011386 05/2009

756



Glossary

Twido
A line of Schneider Electric controllers consisting of two types of controllers
(Compact and Modular), Expansion Modules to add I/O points, and options such as
Real-Time Clock, communications, operator display, and backup memory
cartridges.

TwidoSuite
A 32-Bit Windows, graphical development software for configuring and
programming Twido controllers.

U

UDP
A communications protocol (User Datagram Protocol) that is the part of the TCP/IP
suite used by applications to transfer datagrams. UDP is also the part of TCP/IP
responsible for port addresses.

Unresolved symbol
A symbol without a variable address.

\'

Variable
Memory unit that can be addressed and modified by a program.

Very fast counter:
A function block that provides for faster counting than available with Counters and
Fast Counters function blocks. A Very Fast Counter can count up to a rate of 20 KHz.

w

Warm restart
A power-up by the controller after a power loss without changing the application.
Controller returns to the state which existed before the power loss and completes
the scan which was in progress. All of the application data is preserved. This feature
is only available on modular controllers.

757 35011386 05/2009



Index

g

Symbols

Closed loop adjustment, 665

-, 677
*, 677
/, 677
%Ci, 491
%DR, 550
%FC, 556
%INW, 41
%MSG, 575
%PLS, 547
%PWM, 543
%QNW, 41
%S, 719
%S0, 719
%S0=1
Twido Extreme, 221
%S1, 719
Twido Extreme, 22171
%S10, 720
%S100, 724
%S101, 725
%S103, 725
%S104, 725
%S11, 720
%S110, 725
%S111, 725
%S112, 725
%S113, 726
%S118, 726
%S119, 726
%S12, 720

%S120, 726
%S121, 726
%S13, 720
%S17, 720
%S18, 720
%S19, 720
%S20, 721
%S21, 721
%S22, 721
%S23, 721
%S24, 721
%S25, 722
%S26, 722
%S31, 722
%S33, 722
%S38, 723
%S39, 723
%S4, 719
%S5, 719
%S50, 723
%S51, 723
%S52, 723
%S59, 723
%S6, 719
%S66, 724
%S69, 724
%S7, 719
%S75, 724
%S8, 719
%S9, 719
Twido Extreme, 221

%S95, 724

35011386 05/2009

758



Index

%S96, 724
%S97, 724
%SBR, 496
%SCi, 499
%SW, 727
%SWO, 727
%SWH1, 727
%SW101, 739
%SW102, 739
%SW103, 739
%SW104, 739
%SW105, 740
%SW106, 740
%SW11, 728
%SW111, 740
%SW112, 740
%SW113, 740
%SW114, 740
%SW118, 741
%SW120, 741
%SW121, 741
%SW122, 741
%SW14, 729
%SW15, 729
%SW16, 729
%SW17, 729
%SW18, 729
%SW19, 729
%SW20..%SW27, 311, 729
%SW30, 729
%SW31, 730
%SW32, 730
%SW33, 730, 731
Twido Extreme, 354
%SW34, 730, 731
%SW35, 730, 731
%SW36, 730, 731
%SW37, 730, 731
%SW38, 730, 731
%SW39, 731
%SW40, 731
%SW48, 731
%SW49, 731
%SW50, 731
%SW51, 731

%SW52, 731
%SW53, 731
%SW54, 731
%SW55, 731
%SW56, 731
%SW57, 731
%SW58, 732
%SW59, 732
%SW6, 727
%SW60, 732
%SW63, 733
%SW64, 733
%SW65, 734
%SW67, 734
%SW68, 735
%SW69, 735
%SW7, 728
%SW73, 735
%SW74, 735
%SW76, 735
%SW77, 735
%SW78, 735
%SW79, 735
%SW80, 735

Twido Extreme, 354, 736
%SW81...%SW87, 310
%SW81..%SW87, 736
%SW94, 737
%SW96, 738
%SW97, 738
%TM, 488
%VFC, 559
+, 677

A

ABS, 677

Absolute value, 511

Accessing debugging
PID, 647

Accessing the configuration
PID, 624

Accumulator, 437

ACQOS, 681

Action Zone, 413

759

35011386 05/2009



Index

active analog input Interface bus, 255
Twido Extreme, 181 Slave diagnostics, 243
Add, 511 Slave insertion, 251
Addressing analog 1/0O modules, 157 software configuration, 234
Addressing I/0, 38 software set up principle, 230
Advanced function blocks transfer of a slave image, 246
Bit and word objects, 532 ASCII
Programming principles, 534 communication, 72
Analog Channel, 152 Communications, 106
analog input Configuring the port, 109
Twido Extreme, 181 Hardware configuration, 106
analog input addresses Software configuration, 7108
Twido Extreme, 181 ASCII Link
analog input configuration Example, 113
Twido Extreme, 181 ASIN, 681
analog input configuration fields Assignment instructions, 468
Twido Extreme, 183 Numerical, 504
analog input example AT tab
Twido Extreme, 184 PID, 638
Analog module ATAN, 681
Example, 168
Analog Module
operating, 156 B
Analog modules Backup and restore
addressing, 157 32K backup cartridge, 57
Analog Modules 64K extended memory cartridge, 60
Configuring 1/0, 159 memory structure, 52
AND instructions, 470 without cartridges, 55
Animation tab Basic function blocks, 479
PID, 648 Bit objects, 532
Arithmetic Instructions, 571 Addressing, 34
AS-Interface Bus V2 Function blocks, 42
configuration screen, 232 Overview, 25
AS-Interface V2 bus Bit strings, 44
accepting the new configuration, 249 BLK, 430
Changing a slave address, 244 Blocks
Explicit exchanges, 255 in Ladder diagrams, 415
general functional description, 227 Boolean accumulator, 437
I/O addressing, 253 Boolean instructions, 462
Implicit exchanges, 254 OR, 472
in online mode, 240 Understanding the format used in this
Inoperative slave, 252 manual, 464
Operating mode, 260 Boot-up, 267
Presentation, 226 broadcast (receive) messages
Programming and diagnostics for the AS- CANJ1939, 347

35011386 05/2009 760



Index

broadcast (transmit) messages
CANJ1939, 346
broadcast configuration
CANJ1939, 346
Bus AS-Interface V2
automatic slave addressing, 250
Bus AS-Interface V2 bus
debugging the bus, 246

C

Calculation, 511

CAN bus line, 264

CAN_CMD, 313

CAN-high, 264

CAN-low, 264

CANJ1939
address assignment, 325
broadcast, 325
broadcast (receive) messages, 347
broadcast (transmit) messages, 346
broadcast configuration, 346
collision detection, 325
communication, 325
configuration dialog boxes, 332
creating (or deleting) transmit/receive ob-
jects, 335
creating transmit/receive objects, 336
deleting transmit/receive objects, 341
DP (data page), 323
element configuration, 332
expert mode configuration, 350
I/0O objects, 352
IDE (Identifier Extension), 324
implementing the CANJ1939 Bus, 326
knowledge base, 320
network configuration, 332
PDU format, 324
peer to peer, 325
PG (parameter group), 322
PGN (parameter group number), 322
port configuration, 332
PS (PDU Specific), 324
RTR (Remote Transmission Request,

324

SOF (start of frame), 324

source address, 324

SPN (suspect parameter number), 322

SPN request, 350

SRR (Substitute Remote Request), 324

system words, 354

viewing transmit/receive objects, 343
CANJ1939 bus

configuration methodology, 329
CANJ1939 elements, 320
CANJ1939 programming

data browsing, 354

I/O error messages, 355
CANJ1939: identifier, 323
CANopen bus

configuration methodology, 284
CANopen fieldbus

Explicit exchanges, 310

Implicit exchanges, 309

Programming and diagnostics for the

CANopen fieldbus, 310
CANopen master

PDO addressing, 308
CANopen: Description, 264
CANopen: Hot Swap, 317
CANopen: The protocol, 264
Clock functions

Overview, 580

Schedule blocks, 581

Setting date and time, 586

time and date stamping, 584
Coils, 415

graphic elements, 419
communication by Ethernet, 74
communication by modem, 74, 81
communication cable connection, 74
communication overview, 72
Communication with a PC

using Ethernet for Twido Extreme, 80
Communications

ASCII, 106

Modbus, 117

Remote Link, 93

761

35011386 05/2009



Index

Comparison block
graphic element, 420
Comparison blocks, 416
Comparison Instructions, 509
Configuration
PID, 624
Configuring
Transmission/Reception table for ASCII,
110
Configuring
A port for ASCII, 109
Port for Modbus, 120
configuring a %PLS function block
Twido Extreme, 201
configuring a %PWM function block
Twido Extreme, 209
Contacts, 415
graphic element, 418
Control parameters
ASCII, 110
Control table
Modbus, 122
Conversion instructions, 518
COS, 681
Counters, 491
Programming and configuring, 494

D
Debugging
PID, 647
Decrement, 511
dedicated PLS/PWM outputs
Twido Extreme, 198
DEG_TO_RAD, 683
Derivative action, 670
DINT_TO_REAL, 685
Direct labeling, 48
discrete input
Twido Extreme, 176
discrete input addresses
Twido Extreme, 177
discrete input configuration
discrete input configuration, 176

discrete input configuration fields
Twido Extreme, 179
discrete output
Twido Extreme, 195
discrete output addresses
Twido Extreme, 195
discrete output configuration
Twido Extreme, 195
discrete output configuration fields
Twido Extreme, 197
dither, 216
Divide, 511
Documenting your program, 432
Double word objects
Addressing, 37
Function blocks, 43
Overview, 30
Drum controller function block, 550
Drum controllers
programming and configuring, 554

E

ECU (Electronic Control Unit), 320
Edge detection
falling, 463
Rising, 462
END Instructions, 523
END_BLK, 430
EQUAL_ARR, 702
error, 512
Ethernet connection
Twido Extreme, 80
Event tasks
Different event sources, 65
Event management, 67
Overview, 64
Example
Up/Down Counter, 495
EXCH, 574
EXCH instruction, 574
Exchange function block, 575
Exclusive OR, instructions, 474
EXP, 677

35011386 05/2009

762



Index

expert mode configuration
CANJ1939, 350
EXPT, 677

F:

Fast counter function block, 556
FIFO
introduction, 536
operation, 539
FIND_, 704
Floating objects
Addressing, 36
Floating point objects
Overview, 30
Function blocks
Counters, 491
drum controller, 550
Drum controller, 554
graphic element, 420
in programming grid, 415
Overview of basic function blocks, 479
programming standard function blocks,
481
Function Blocks
PWM, 543
Function blocks
registers, 536
Schedule blocks, 581
Shift Bit Register (%SBR), 496
Step counter (%SCi), 499
timers, 483, 488

G

General tab
PID, 625, 630
Grafcet
associated actions, 455
Examples, 449
Instructions, 447
preprocessing, 452
sequential processing, 453
Graphic elements
Ladder diagrams, 418

H

hydraulic

dither, 216

ramp, 217
hydraulic PWM Output Configuration Exam-
ple

Twido Extreme, 222

1/0

Addressing, 38
I/0O addresses

Twido Extreme, 172
Increment, 511
Index overflow, 49
indexes

message object, 340
input filtering

Twido Extreme, 176
input forcing

Twido Extreme, 176
input latching

Twido Extreme, 177
Input tab

PID, 633
input/output overview

Twido Extreme, 172
inputs/outputs

Twido Extreme, 173
Instructions

AND, 470

Arithmetic, 511

Assignment, 468

Comparison, 509

Conversion, 518
instructions

END, 523
Instructions

JMP, 526

Load, 466

logic, 514
instructions

NOP, 525

763

35011386 05/2009



Index

Instructions

NOT, 476

RET, 528

SR, 528

XOR, 474
INT_TO_REAL, 685
Integral action, 669

J

JMP, 526
Jump Instructions, 526

K

key switch
input, 174

L

Labeling
Indexed, 48
Ladder diagrams
blocks, 415
graphic elements, 418
introduction, 411
OPEN and SHORT, 421
programming principles, 413
Ladder List Rung, 431
Ladder program
reversing to List, 428
Ladder rungs, 411
LD, 466
LDF, 463, 466
LDN, 466
LDR, 462, 466
Life guarding, 273
Life time, 273
LIFO
introduction, 536
operation, 538
Link elements
graphic elements, 418
List instructions, 438

List Language
overview, 435
List Line Comments, 432
LKUP, 712
LN, 677
LOG, 677
logic instructions, 514

M

MAX_ARR, 706
MEAN, 717
Memory
32K cartridge, 57
64K cartridge, 60
Structure, 52
without cartridge, 55
Memory bits, 25
Memory words, 27
message object
indexes, 340
summary, 339
MIN_ARR, 706
Modbus
communication, 72
Communications, 117
Configuring the port, 120
Hardware configuration, 117
master, 73
slave, 73
Software configuration, 7120
Standard requests, 134
modbus function code
read device identification, 143
Modbus Link
Example 1, 126
Example 2, 130
Mode: Operational, 269
Mode: pre-operational, 269
MPP, 444
MPS, 444
MRD, 444
Multiply, 511

35011386 05/2009

764



Index

N

Network
Addressing, 41
Node guarding, 273
Non-reversible programming, 534
NOP, 525
NOP Instruction, 525
NOT instruction, 476
Numerical instructions
Assignment, 504
shift, 516
Numerical processing
Overview, 503

(o)

Object tables, 44
Object validation, 24
Objects
words, 27
Bit objects, 25
Double word, 30
Floating point, 30
Function blocks, 42
Structured, 44
OCCUR_ARR, 707
OPEN, 421
Open loop adjustment, 666
opening the %PLS configuration table
Twido Extreme, 204
opening the %PWM configuration table
Twido Extreme, 211
Operands, 437
operating modes
Twido Extreme, 221
Operation blocks, 417
operation blocks
graphic element, 420
Operator Display
Controller ID and states, 394
Overview, 391
Real-Time correction, 405
Serial port settings, 403
System objects and variables, 396
Time of day clock, 404

OR Instruction, 472
OUT_BLK, 430
Output tab

PID, 644
overflow, 512
Overflow

Index, 49
Overview

PID, 615

P

Parameters, 483
Parentheses
modifiers, 442
nesting, 442
using in programs, 441
passive analog input
Twido Extreme, 181
PG (parameter group), 322
PGN
request, 356
PGN (parameter group number), 322
Physical layer, 264
CAN bus line, 264
PID
Animation tab, 648
AT tab, 638
Configuration, 624
Debugging, 647
General tab, 625, 630
Input tab, 633
OQutput tab, 644
Overview, 615
PID tab, 635
Trace tab, 651
PID characteristics, 619
PID tab
PID, 635
Pin outs

Communications cable female connec-

tor, 77

Communications cable male connector,

77

765

35011386 05/2009



Index

PLS

Twido Extreme, 198
PLS function block

Twido Extreme, 199
Potentiometer, 150
Programming

documenting your program, 432
Programming advice, 423
Programming grid, 413
Programming languages

overview, 19
Programming Principles, 534
Proportional action, 668
Protocol

Modbus TCP/IP, 73
protocols, 72
Pulse generation, 547
pulse generator output

Twido Extreme, 198
Pulse width modulation, 543
PWM function block

Twido Extreme, 206
PWM hydraulic output

Twido Extreme, 214
PWM hydraulic output configuration

Twido Extreme, 214
PWM input

Twido Extreme, 186
PWM input addresses

Twido Extreme, 186
PWM input configuration

Twido Extreme, 186
PWM Input Configuration Example

Twido Extreme, 188
PWM output

Twido Extreme, 205
PWM output addresses

Twido Extreme, 205, 214
PWM output configuration

Twido Extreme, 205

Q

Queue, 536

R

R, 468
RAD_TO_DEG, 683
REAL_TO_DINT, 685
REAL_TO_INT, 685
Real-Time correction factor, 405
Receiving messages, 574
Registers

FIFO, 539

LIFO, 538

programming and configuring, 540
Remainder, 511

remote link
communication, 72

Remote Link
Communications, 93
Example, 101

Hardware configuration, 94
Master controller configuration, 96
Remote controller configuration, 96
Remote controller scan synchronization,
96
Remote I/O data access, 98
Software configuration, 95
RET, 528
Reversibility
guidelines, 430
introduction, 428
Reversible programming, 534
ROL_ARR, 708
ROR_ARR, 708
RTC correction, 580
Rung Header, 414
comments, 433
Rungs
unconditional, 430

S

S, 468

Shift bit register, 496

Shift instructions, 516

SHORT, 421

SIN, 681

Single/double word conversion instructions,

35011386 05/2009

766



Index

520
SORT_ARR, 710
SPN (suspect parameter number), 322
SQRT, 677
Square root, 511
SR, 528
ST, 468
Stack, 536
Stack instructions, 444
Step counter, 499
STN, 468
Subroutine instructions, 528
Subtract, 511
SUM_ARR, 700
summary
message object, 339
Symbolizing, 50
System bits, 719
System words, 727

T

TAN, 681
TCP/IP
Protocol, 73
Test Zone, 413
Timers, 483
introduction, 483
programming and configuring, 488
time base of 1 ms, 489
TOF type, 485
TON type, 486
TP type, 487
TOF timer, 485
TON timer, 486
TP type timer, 487
Trace tab
PID, 651
transmit/receive objects (CANJ1939)
creating, 336
creating (or deleting), 335
deleting, 341
viewing, 343
Transmitting messages, 574
TRUNC, 677

Twido Extreme
active analog input, 181
Twido Extreme
analog input , 181
analog input addresses, 181
analog input configuration, 181
analog input configuration fields, 183
analog input example, 184
configuring a %PLS function block, 201
configuring a %PWM function block, 209
dedicated PLS/PWM outputs, 198
Twido Extreme
discrete input , 176
discrete input addresses, 177
Twido Extreme
discrete input configuration, 176
discrete input configuration fields, 179
discrete output, 195
discrete output addresses, 195
discrete output configuration, 195
discrete output configuration fields, 197
dither, 216
Ethernet connection, 80
hydraulic PWM Output Configuration Ex-
ample, 222
Twido Extreme
I/O addresses, 172
input filtering, 176
input forcing, 176
input latching, 177
input/output overview , 172
inputs/outputs, 173
Twido Extreme
opening the %PLS configuration table,
204
opening the %PWM configuration table,

767

35011386 05/2009



Index

211
operating modes, 221
passive analog input, 181
PLS, 198
PLS function blockj, 199
pulse generator output, 198
PWM function block, 206
PWM hydraulic output , 214
PWM hydraulic output configuration, 214
PWM input, 186
PWM input addresses, 186
PWM input configuration, 186
PWM Input Configuration Example, 188
PWM output , 205
PWM output addresses, 205, 214
PWM output configuration, 205
ramp, 217
TwidoSuite
Introduction, 18

U

Unconditional rungs, 430

\')

Very fast counters function block (%VFC),
559

w

Word Objects, 532

Word objects
Addressing, 35
Function blocks, 42
Overview, 27

X

XOR, 474

35011386 05/2009

768



Index

769 35011386 05/2009



	TwidoSuite V2.2
	Table of Contents
	Safety Information
	About the Book
	Description of Twido Software
	Introduction to TwidoSuite
	Introduction to TwidoSuite
	Introduction to Twido Languages

	Twido Language Objects
	Language Object Validation
	Bit Objects
	Word Objects
	Floating Point and Double Word Objects
	Addressing Bit Objects
	Addressing Word Objects
	Addressing Floating Objects
	Addressing Double Word Objects
	Addressing Inputs/Outputs
	Network Addressing
	Function Block Objects
	Structured Objects
	Indexed Objects
	Symbolizing Objects

	User Memory
	User Memory Structure
	Backup and Restore without Backup Cartridge or Extended Memory
	Backup and Restore with a 32K Backup Cartridge
	Using the 64K Extended Memory Cartridge

	Event task management
	Overview of Event Tasks
	Description of Different Event Sources
	Event Management


	Special Functions
	Communications
	Presentation of the Different Types of Communication
	TwidoSuite to Controller Communication
	Communication between TwidoSuite and a Modem
	Remote Link Communications
	ASCII Communications
	Modbus Communications
	Standard Modbus Requests
	Modbus Function Codes 23 (MB FC) - Read/Write Multiple registers and N Words
	Modbus Function Codes 43/14 (MB FC) - Read Device Identification
	Transparent Ready Implementation Class (Twido Serial A05, Ethernet A15)

	Built-In Analog Functions
	Analog potentiometer
	Analog Channel

	Managing Analog Modules
	Analog Module Overview
	Addressing Analog Inputs and Outputs
	Configuring Analog Inputs and Outputs
	Analog Module Status Information
	Example of Using Analog Modules

	Twido Extreme Input/Output Configuration
	An Introduction to Twido Extreme Inputs and Outputs
	Twido Extreme Addressing Inputs/Outputs (I/O)

	Twido Extreme Input Configuration
	Twido Extreme Discrete Input Configuration
	Twido Extreme Analog Input Configuration
	Twido Extreme PWM Input Configuration
	Twido Extreme PWM Input Configuration Example

	Twido Extreme Output Configuration
	Twido Extreme Discrete Output Configuration
	Twido Extreme Pulse (PLS) Generator Output Configuration
	Twido Extreme PWM Output Configuration in Standard Mode
	Twido Extreme PWM Output Configuration in Hydraulic Mode
	Twido Extreme Hydraulic PWM Output Configuration Example


	Installing the AS-Interface V2 bus
	Presentation of the AS-Interface V2 Bus
	General Functional Description
	Software Set up Principles
	Description of the Configuration Screen for the AS-Interface Bus
	Configuration of the AS-Interface Bus
	Description of the AS-Interface Window in Online Mode
	Modification of Slave Address
	Updating the AS-Interface Bus Configuration in Online Mode
	Automatic Addressing of an AS-Interface V2 Slave
	How to insert a Slave Device into an Existing AS-Interface V2 Configuration
	Automatic Configuration of a Replaced AS-Interface V2 Slave
	Addressing I/Os Associated with Slave Devices Connected to the AS-Interface V2 Bus
	Programming and Diagnostics for the AS-Interface V2 Bus
	AS-Interface V2 Bus Interface Module Operating Mode:

	Installing and Configuring the CANopen Fieldbus
	CANopen Fieldbus Overview
	CANopen Knowledge Base
	About CANopen
	CANOpen Boot-Up
	Process Data Object (PDO) Transmission
	Access to Data by Explicit Exchanges (SDO)
	"Node Guarding" and "Life Guarding"
	Internal Bus Management

	Implementing the CANopen Bus
	Overview
	Hardware Setup
	CANOpen Configuration - Default Parameter
	Configuration Methodology
	Declaration of a CANopen Master
	CANopen Configuration Tool
	CANopen Network Slave Declaration
	CANopen Objects Mapping (Slaves)
	CANopen Objects Linking (Master)
	CANopen Objects Symbols
	Addressing PDOs of the CANopen master
	Programming and diagnostics for the CANopen fieldbus
	CANopen Hot Swap for Twido Controllers


	Installing and Configuring the CANJ1939 Fieldbus
	CANJ1939 Fieldbus Overview
	CANJ1939 Knowledge Base
	CANJ19139 Parameter Group Number and Suspect Parameter Number
	CANJ1939 Identifier
	Communication on a CANJ1939 Network

	Implementing the CANJ1939 Bus
	CANJ1939 Implementation Overview
	Hardware Setup
	CANJ1939 Configuration Methodology
	CANJ1939 Configuration Dialog Boxes (Element, Network, Port)
	Creating or Deleting CANJ1939 Transmit/Receive Objects
	Viewing CANJ1939 Transmit/Receive objects
	CANJ1939 Broadcast Configuration
	CANJ1939 Peer-to Peer Configuration
	CANJ1939 Configuration in Expert Mode
	CANJ1939 Input/Output Objects
	Request a PGN Output


	Configuring the TwidoPort Ethernet Gateway
	Normal Configuration and Connection of TwidoPort
	Normal Configuration with TwidoSuite
	BootP Configuration

	TwidoPort’s Telnet Configuration
	Introducing Telnet Configuration
	Telnet Main Menu
	IP/Ethernet Settings
	Serial Parameter Configuration
	Configuring the Gateway
	Security Configuration
	Ethernet Statistics
	Serial Statistics
	Saving the Configuration
	Restoring Default Settings
	Upgrading the TwidoPort Firmware
	Forgot Your Password and/or IP Configuration?

	Communication Features
	Ethernet Features
	Modbus/TCP Communications Protocol
	Locally Supported Modbus Function Codes


	Operator Display Operation
	Operator Display
	Controller Identification and State Information
	System Objects and Variables
	Serial Port Settings
	Time of Day Clock
	Real-Time Correction Factor


	Description of Twido Languages
	Ladder Language
	Introduction to Ladder Diagrams
	Programming Principles for Ladder Diagrams
	Ladder Diagram Blocks
	Ladder Language Graphic Elements
	Special Ladder Instructions OPEN and SHORT
	Programming Advice
	Ladder/List Reversibility
	Guidelines for Ladder/List Reversibility
	Program Documentation

	Instruction List Language
	Overview of List Programs
	Operation of List Instructions
	List Language Instructions
	Using Parentheses
	Stack Instructions (MPS, MRD, MPP)

	Grafcet
	Description of Grafcet Instructions
	Description of Grafcet Program Structure
	Actions Associated with Grafcet Steps


	Description of Instructions and Functions
	Basic Instructions
	Boolean Processing
	Boolean Instructions
	Understanding the Format for Describing Boolean Instructions
	Load Instructions (LD, LDN, LDR, LDF)
	Assignment instructions (ST, STN, R, S)
	Logical AND Instructions (AND, ANDN, ANDR, ANDF)
	Logical OR Instructions (OR, ORN, ORR, ORF)
	Exclusive OR, instructions (XOR, XORN, XORR, XORF)
	NOT Instruction (N)

	Basic Function Blocks
	Basic Function Blocks
	Standard function blocks programming principles
	Timer Function Block (%TMi)
	TOF Type of Timer
	TON Type of Timer
	TP Type of Timer
	Programming and Configuring Timers
	Up/Down Counter Function Block (%Ci)
	Programming and Configuring Counters
	Shift Bit Register Function Block (%SBRi)
	Step Counter Function Block (%SCi)

	Numerical Processing
	Introduction to Numerical Instructions
	Assignment Instructions
	Comparison Instructions
	Arithmetic Instructions on Integers
	Logic Instructions
	Shift Instructions
	Conversion Instructions
	Single/Double Word Conversion Instructions

	Program Instructions
	END Instructions
	NOP Instruction
	Jump Instructions
	Subroutine Instructions


	Advanced Instructions
	Advanced Function Blocks
	Bit and Word Objects Associated with Advanced Function Blocks
	Programming Principles for Advanced Function Blocks
	LIFO/FIFO Register Function Block (%Ri)
	LIFO Operation
	FIFO Operation
	Programming and Configuring Registers
	Pulse Width Modulation Function Block (%PWM)
	Pulse Generator Output Function Block (%PLS)
	Drum Controller Function Block (%DR)
	Drum Controller Function Block %DRi Operation
	Programming and Configuring Drum Controllers
	Fast Counter Function Block (%FC)
	Very Fast Counter Function Block (%VFC)
	Transmitting/Receiving Messages - the Exchange Instruction (EXCH)
	Exchange Control Function Block (%MSGx)

	Clock Functions
	Clock Functions
	Schedule Blocks
	Time/Date Stamping
	Setting the Date and Time

	Twido PID Quick Start Guide
	Purpose of Document
	Step 1 - Configuration of Analog Channels Used for Control
	Step 2 - Prerequisites for PID Configuration
	Step 3 - Configuring the PID
	Step 4 - Initialization of Control Set-Up
	Step 5 - Control Set-Up AT + PID
	Step 6 - Debugging Adjustments

	PID Function
	Overview
	Principal of the Regulation Loop
	Development Methodology of a Regulation Application
	Compatibilities and Performances
	Detailed Characteristics of the PID Function
	How to Access the PID Configuration
	PID Screen Elements of PID Function
	General Tab of PID function
	Input Tab of the PID
	PID Tab of PID function
	AT Tab of PID Function
	Output Tab of the PID
	How to Access PID Debugging
	Animation Tab of PID Function
	Trace Screen of PID Function
	PID States and Error Codes
	PID Tuning with Auto-Tuning (AT)
	PID Parameter Adjustment Method
	Role and Influence of PID Parameters
	Appendix 1: PID Theory Fundamentals
	Appendix 2: First-Order with Time Delay Model

	Floating point instructions
	Arithmetic Instructions on Floating Point
	Trigonometric Instructions
	Conversion instructions
	Integer Conversion Instructions <-> Floating

	ASCII instructions
	ROUND Instruction
	ASCII to Integer Conversion
	Integer to ASCII Conversion
	ASCII to Float Conversion
	Float to ASCII Conversion

	Instructions on Object Tables
	Table Summing Functions
	Table Comparison Functions
	Table Search Functions
	Table Search Functions for Maximum and Minimum Values
	Number of Occurrences of a Value in a Table
	Table Rotate Shift Function
	Table Sort Function
	Floating Point Table interpolation Function
	Mean Function of the Values of a Floating Point Table


	System Bits and System Words
	System Bits (%S)
	System Words (%SW)


	Glossary
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


